MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
- URL: http://arxiv.org/abs/2408.08600v1
- Date: Fri, 16 Aug 2024 08:34:50 GMT
- Title: MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation
- Authors: Zunjie Xiao, Xiaoqing Zhang, Risa Higashita, Jiang Liu,
- Abstract summary: Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis.
Transformer-based models address these limitations but introduce substantial computational overhead.
We introduce MM-UNet, an efficient Mixed model tailored for ophthalmic image segmentation.
- Score: 3.2846676620336632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis. Although fully convolutional neural networks (CNNs) are commonly employed for segmentation, they are constrained by inductive biases and face challenges in establishing long-range dependencies. Transformer-based models address these limitations but introduce substantial computational overhead. Recently, a simple yet efficient Multilayer Perceptron (MLP) architecture was proposed for image classification, achieving competitive performance relative to advanced transformers. However, its effectiveness for ophthalmic image segmentation remains unexplored. In this paper, we introduce MM-UNet, an efficient Mixed MLP model tailored for ophthalmic image segmentation. Within MM-UNet, we propose a multi-scale MLP (MMLP) module that facilitates the interaction of features at various depths through a grouping strategy, enabling simultaneous capture of global and local information. We conducted extensive experiments on both a private anterior segment optical coherence tomography (AS-OCT) image dataset and a public fundus image dataset. The results demonstrated the superiority of our MM-UNet model in comparison to state-of-the-art deep segmentation networks.
Related papers
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization [8.969596531778121]
We propose a novel framework named MLN-net, which can accurately segment multi-source images using only single source images.
In this paper, extensive experiments validate the effectiveness of MLN-net in segmenting clustered microcalcifications from different domains.
arXiv Detail & Related papers (2023-09-06T05:56:30Z) - Gene-induced Multimodal Pre-training for Image-omic Classification [20.465959546613554]
This paper proposes a Gene-induced Multimodal Pre-training framework, which jointly incorporates genomics and Whole Slide Images (WSIs) for classification tasks.
Experimental results on the TCGA dataset show the superiority of our network architectures and our pre-training framework, achieving 99.47% in accuracy for image-omic classification.
arXiv Detail & Related papers (2023-09-06T04:30:15Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Site Generalization: Stroke Lesion Segmentation on Magnetic Resonance
Images from Unseen Sites [40.32385363670918]
Strokes are the main cause of various cerebrovascular diseases.
Deep learning-based models have been proposed for this task, but generalizing these models to unseen sites is difficult.
We propose a U-net--based segmentation network termed SG-Net to improve unseen site generalization for stroke lesion segmentation on MR images.
arXiv Detail & Related papers (2022-05-09T14:33:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.