DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings
- URL: http://arxiv.org/abs/2309.02908v2
- Date: Tue, 6 Feb 2024 15:37:11 GMT
- Title: DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings
- Authors: Aditya Mishra, Haroon R. Lone, Aayush Mishra
- Abstract summary: This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
- Score: 1.2891210250935148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy prediction in buildings plays a crucial role in effective energy
management. Precise predictions are essential for achieving optimal energy
consumption and distribution within the grid. This paper introduces a Long
Short-Term Memory (LSTM) model designed to forecast building energy consumption
using historical energy data, occupancy patterns, and weather conditions. The
LSTM model provides accurate short, medium, and long-term energy predictions
for residential and commercial buildings compared to existing prediction
models. We compare our LSTM model with established prediction methods,
including linear regression, decision trees, and random forest. Encouragingly,
the proposed LSTM model emerges as the superior performer across all metrics.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score
of 0.97 and the most favorable mean absolute error (MAE) of 0.007. An
additional advantage of our developed model is its capacity to achieve
efficient energy consumption forecasts even when trained on a limited dataset.
We address concerns about overfitting (variance) and underfitting (bias)
through rigorous training and evaluation on real-world data. In summary, our
research contributes to energy prediction by offering a robust LSTM model that
outperforms alternative methods and operates with remarkable efficiency,
generalizability, and reliability.
Related papers
- TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model [0.34028430825850625]
This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction.
Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models.
arXiv Detail & Related papers (2024-10-20T04:46:42Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
We propose EWMoE, an effective model for accurate global weather forecasting, which requires significantly less training data and computational resources.
Our model incorporates three key components to enhance prediction accuracy: 3D absolute position embedding, a core Mixture-of-Experts layer, and two specific loss functions.
arXiv Detail & Related papers (2024-05-09T16:42:13Z) - Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage [0.0]
The impact on forecast accuracy of measures to improve model data efficiency are quantified.
The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy.
Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.
arXiv Detail & Related papers (2024-02-19T21:01:11Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.