TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model
- URL: http://arxiv.org/abs/2410.15283v1
- Date: Sun, 20 Oct 2024 04:46:42 GMT
- Title: TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model
- Authors: Shirong Zheng, Shaobo Liu, Zhenhong Zhang, Dian Gu, Chunqiu Xia, Huadong Pang, Enock Mintah Ampaw,
- Abstract summary: This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction.
Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models.
- Score: 0.34028430825850625
- License:
- Abstract: With the advancement of global climate change and sustainable development goals, urban building energy consumption optimization and carbon emission reduction have become the focus of research. Traditional energy consumption prediction methods often lack accuracy and adaptability due to their inability to fully consider complex energy consumption patterns, especially in dealing with seasonal fluctuations and dynamic changes. This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction. TRIZ plays a key role in model design, providing innovative solutions to achieve an effective balance between energy efficiency, cost and comfort by systematically analyzing the contradictions in energy consumption optimization. GWO is used to optimize the parameters of the model to ensure that the model maintains high accuracy under different conditions. The SARIMA model focuses on capturing seasonal trends in the data, while the LSTM model handles short-term and long-term dependencies in the data, further improving the accuracy of the prediction. The main contribution of this research is the development of a robust model that leverages the strengths of TRIZ and advanced deep learning techniques, improving the accuracy of energy consumption predictions. Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models. This innovative approach not only enhances urban energy management but also provides a new framework for optimizing energy use and reducing carbon emissions, contributing to sustainable development.
Related papers
- Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting [5.240979281331069]
This paper introduces a novel approach that combines deep learning techniques with environmental decision support systems.
The model integrates advanced deep learning techniques, including LSTM and Transformer, and PSO algorithm for parameter optimization.
Results show that our model achieves substantial improvements across various metrics.
arXiv Detail & Related papers (2024-10-20T04:53:50Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
arXiv Detail & Related papers (2023-09-06T11:02:53Z) - Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management [3.6811136816751513]
This research leverages extensive raw data from building infrastructures to uncover energy consumption patterns.
We investigate the factors influencing energy efficiency and cost reduction in buildings, utilizing Lasso Regression, Decision Tree, and Random Forest models.
We apply metaheuristic techniques to enhance the Decision Tree algorithm, resulting in improved predictive precision.
arXiv Detail & Related papers (2023-05-15T01:21:42Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
We introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework.
We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space.
arXiv Detail & Related papers (2022-06-13T03:41:31Z) - A Comparative Study on Energy Consumption Models for Drones [4.660172505713055]
We benchmark the five most popular energy consumption models for drones derived from their physical behaviours.
We propose a novel data-driven energy model using the Long Short-Term Memory (LSTM) based deep learning architecture.
Our experimental results have shown that the LSTM based approach can easily outperform other mathematical models for the dataset under study.
arXiv Detail & Related papers (2022-05-30T23:05:32Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.