論文の概要: Indoor Localization Using Radio, Vision and Audio Sensors: Real-Life
Data Validation and Discussion
- arxiv url: http://arxiv.org/abs/2309.02961v1
- Date: Wed, 6 Sep 2023 12:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 15:36:06.944056
- Title: Indoor Localization Using Radio, Vision and Audio Sensors: Real-Life
Data Validation and Discussion
- Title(参考訳): 無線, 視覚, 音響センサを用いた屋内定位: 実生活データ検証と議論
- Authors: Ilayda Yaman, Guoda Tian, Erik Tegler, Patrik Persson, Nikhil Challa,
Fredrik Tufvesson, Ove Edfors, Kalle Astrom, Steffen Malkowsky, Liang Liu
- Abstract要約: 評価は最先端のアルゴリズムに基づいており、実際のデータセットを使用している。
ローカライズ精度、信頼性、キャリブレーション要件、潜在的なシステムの複雑さなどについて論じる。
この結果は、堅牢で高精度なマルチセンサローカライゼーションシステムの開発のためのガイドラインと基礎となる。
- 参考スコア(独自算出の注目度): 9.153277429045898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates indoor localization methods using radio, vision, and
audio sensors, respectively, in the same environment. The evaluation is based
on state-of-the-art algorithms and uses a real-life dataset. More specifically,
we evaluate a machine learning algorithm for radio-based localization with
massive MIMO technology, an ORB-SLAM3 algorithm for vision-based localization
with an RGB-D camera, and an SFS2 algorithm for audio-based localization with
microphone arrays. Aspects including localization accuracy, reliability,
calibration requirements, and potential system complexity are discussed to
analyze the advantages and limitations of using different sensors for indoor
localization tasks. The results can serve as a guideline and basis for further
development of robust and high-precision multi-sensory localization systems,
e.g., through sensor fusion and context and environment-aware adaptation.
- Abstract(参考訳): 本論文では,同一環境における無線,視覚,音声センサを用いた屋内位置推定手法について検討する。
評価は最先端のアルゴリズムに基づいており、実際のデータセットを使用している。
具体的には,大規模なmimo技術を用いた無線ベースのローカライズのための機械学習アルゴリズム,rgb-dカメラを用いた視覚に基づくローカライズのためのorb-slam3アルゴリズム,マイクロホンアレイを用いた音声ベースのローカライズのためのsfs2アルゴリズムを評価した。
位置決め精度,信頼性,キャリブレーション要件,潜在的なシステム複雑性などの側面を考察し,屋内位置決めタスクに異なるセンサを使用することの利点と限界を分析する。
この結果は、例えばセンサフュージョンやコンテキスト、環境に配慮した適応を通じて、堅牢で高精度なマルチセンサローカライゼーションシステムの開発のためのガイドラインと基礎となる。
関連論文リスト
- RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning [20.688641105430467]
GPS信号が信頼できない場合、グローバルなローカライゼーションは自動運転やロボティクスの応用において不可欠である。
ほとんどのアプローチは、逐次位置認識(PR)とポーズ推定(PE)により、グローバルなローカライゼーションを実現する。
ポーズ推定から直接導出することで、別の場所認識の必要性を回避できる新しいパラダイムであるPR-by-PEローカライゼーションを導入する。
本稿では,鳥眼視(BEV)空間で動作する終端PR-by-PEローカライゼーションネットワークであるRING#を提案する。
論文 参考訳(メタデータ) (2024-08-30T18:42:53Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Improved Indoor Localization with Machine Learning Techniques for IoT
applications [0.0]
本研究では, 教師付き回帰器, 教師付き分類器, RSSIを用いた屋内位置推定のためのアンサンブル手法の3段階に機械学習アルゴリズムを適用した。
実験の結果は、屋内環境におけるローカライズ精度とロバスト性の観点から、異なる教師付き機械学習技術の有効性に関する洞察を与える。
論文 参考訳(メタデータ) (2024-02-18T02:55:19Z) - Data-Induced Interactions of Sparse Sensors [3.050919759387984]
トレーニングデータによって引き起こされるセンサインタラクションの全体像を熱力学ビューで計算する。
これらのデータによって引き起こされるセンサーの相互作用をマッピングすることで、外部選択基準と組み合わせ、センサーの代替効果を予測することができる。
論文 参考訳(メタデータ) (2023-07-21T18:13:37Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - The LuViRA Dataset: Synchronized Vision, Radio, and Audio Sensors for Indoor Localization [41.58739817444644]
データセットには、カラー画像、対応する深度マップ、慣性測定ユニット(IMU)読み取り、5Gの大規模マルチインプットとMIMO(Multiple-output)テストベッドとユーザ機器のチャネル応答が含まれる。
これらのセンサーを同期させて、すべてのデータが同時に記録されるようにします。
このデータセットの主な目的は、ローカライゼーションタスクに最もよく使用されるセンサーとのセンサー融合の研究を可能にすることである。
論文 参考訳(メタデータ) (2023-02-10T15:12:40Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
本稿では,受信したマルチチャンネル音声信号の時間的依存性を自己アテンション機構によってキャプチャする,トランスフォーマーに基づく新しい音声イベント定位フレームワークを提案する。
このフレームワークは, 公開されている3つの音声イベントローカライズデータセットを用いて評価し, 局所化誤差と事象検出精度の点で最先端の手法と比較した。
論文 参考訳(メタデータ) (2021-06-07T18:29:19Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Evaluation of the Robustness of Visual SLAM Methods in Different
Environments [0.0]
本稿では、最新のオープンソースSLAMアルゴリズムを総合的に比較し、その主な焦点は、異なる環境環境下での性能である。
選択されたアルゴリズムは、一般に公開されているデータセットと、データセットの環境に関して推論された結果に基づいて評価される。
これはオフロードシナリオでメソッドをテストする主なターゲットの第1段階です。
論文 参考訳(メタデータ) (2020-09-11T13:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。