論文の概要: An Offline Learning Approach to Propagator Models
- arxiv url: http://arxiv.org/abs/2309.02994v1
- Date: Wed, 6 Sep 2023 13:36:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 15:24:55.992003
- Title: An Offline Learning Approach to Propagator Models
- Title(参考訳): プロパゲータモデルへのオフライン学習アプローチ
- Authors: Eyal Neuman, Wolfgang Stockinger, Yufei Zhang
- Abstract要約: まず、静的データセットから未知の価格影響カーネルを推定するエージェントに対して、オフラインで学習する問題を考察する。
本稿では,価格トラジェクトリ,トレーディング信号,メタオーダーを含むデータセットからプロパゲータを非パラメトリックに推定する手法を提案する。
提案手法では,提案手法を純粋に活用することで,実行コストを最小化しようとするトレーダーが準最適に遭遇することを示す。
- 参考スコア(独自算出の注目度): 3.1755820123640612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider an offline learning problem for an agent who first estimates an
unknown price impact kernel from a static dataset, and then designs strategies
to liquidate a risky asset while creating transient price impact. We propose a
novel approach for a nonparametric estimation of the propagator from a dataset
containing correlated price trajectories, trading signals and metaorders. We
quantify the accuracy of the estimated propagator using a metric which depends
explicitly on the dataset. We show that a trader who tries to minimise her
execution costs by using a greedy strategy purely based on the estimated
propagator will encounter suboptimality due to so-called spurious correlation
between the trading strategy and the estimator and due to intrinsic uncertainty
resulting from a biased cost functional. By adopting an offline reinforcement
learning approach, we introduce a pessimistic loss functional taking the
uncertainty of the estimated propagator into account, with an optimiser which
eliminates the spurious correlation, and derive an asymptotically optimal bound
on the execution costs even without precise information on the true propagator.
Numerical experiments are included to demonstrate the effectiveness of the
proposed propagator estimator and the pessimistic trading strategy.
- Abstract(参考訳): 静的データセットから未知の価格影響カーネルを推定し、過渡的な価格影響を発生させながらリスク資産を清算する戦略を設計するエージェントに対して、オフライン学習問題を考察する。
本稿では,価格トラジェクトリ,トレーディング信号,メタオーダーを含むデータセットからプロパゲータを非パラメトリックに推定する手法を提案する。
推定プロパゲータの精度を,データセットに明示的に依存する計量を用いて定量化する。
推定プロパゲータに純粋に基づいた欲望戦略を用いて、執行コストを最小化しようとするトレーダは、取引戦略と推定要因とのいわゆるスプリアス相関と、バイアス付きコスト汎関数による内在的不確実性により、サブオプティリティに遭遇する。
オフラインの強化学習アプローチを採用することにより,推定プロパゲータの不確実性を考慮に入れた悲観的損失関数を導入し,スプリアス相関を排除し,真のプロパゲータの正確な情報なしでも,実行コストに漸近的に最適な制約を導出する。
提案するプロパゲータ推定器の有効性と悲観的取引戦略を実証するために数値実験を行った。
関連論文リスト
- Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
本稿では、データを徐々に、そして継続的に明らかにする視点を採用する。
提案された戦略の性能は特定の市場で保証される。
定常市場及びエルゴード市場では、投資中の過去の市場情報に基づいて、真の条件分布を利用するいわゆるベイズ戦略は、実証的効用、シャープ比、成長率の観点からは、ほぼ確実に、条件分布に依存しない。
論文 参考訳(メタデータ) (2024-06-19T12:11:42Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Contextual Linear Optimization with Bandit Feedback [35.692428244561626]
文脈線形最適化(CLO)は、ランダムコスト係数の不確実性を低減するために予測的文脈特徴を用いる。
我々は,帯域幅フィードバックを用いたCLOのためのオフライン学習アルゴリズムのクラスについて検討する。
IERMに対する高速な後悔境界を示し、不特定モデルクラスと最適化推定の柔軟な選択を可能にする。
論文 参考訳(メタデータ) (2024-05-26T13:27:27Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
不確実性サンプリングは、機械学習モデルのデータ効率を改善することを目的とした、アクティブな学習戦略である。
予測の不確実性を超えた不確実性サンプリングをベンチマークし、他のアクティブラーニング戦略に対する大きなパフォーマンスギャップを強調します。
提案手法は,データ生成プロセスの観点から基幹的ベイズ不確実性推定法を開発し,不確実性サンプリングを最適クエリへ導く上での有効性を実証する。
論文 参考訳(メタデータ) (2024-05-02T16:50:47Z) - Detecting Toxic Flow [0.40964539027092917]
本稿では,ブローカーが顧客から受ける有害取引を予測する枠組みを開発する。
我々は、我々の方法論をテストするために、外国為替取引のプロプライエタリなデータセットを使用します。
顧客から受け取った取引の内面化や外部化のために毒性予測を利用するブローカーのための戦略を考案する。
論文 参考訳(メタデータ) (2023-12-10T09:00:09Z) - Generating drawdown-realistic financial price paths using path
signatures [0.0]
本稿では,金融価格データのシーケンスを定量的に近似したドローダウンでシミュレーションするための,新しい生成機械学習手法を提案する。
我々は、変分自己エンコーダ生成モデルと縮小再構成損失関数を組み合わせた非自明なモンテカルロアプローチを提唱する。
我々は、混合株式、債券、不動産、商品ポートフォリオに関する数値実験で締めくくった。
論文 参考訳(メタデータ) (2023-09-08T10:06:40Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
割引平均推定問題に対して最小値の最小値を求める。
マルコフ過程の割引されたカーネルから直接サンプリングすることで平均を推定すると、説得力のある統計的性質が得られることを示す。
論文 参考訳(メタデータ) (2023-04-11T09:13:17Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
本研究では,不確実性を考慮した逆確率スコア推定器 (UIPS) を提案する。
実世界の3つのレコメンデーションデータセットを用いた実験結果から,提案したUIPS推定器の有効サンプル効率が示された。
論文 参考訳(メタデータ) (2023-03-11T11:42:26Z) - Statistical Learning with Sublinear Regret of Propagator Models [2.9628715114493502]
本稿では,未知の畳み込みプロパゲータによって駆動される過渡的な衝撃価格と,未知のパラメータを持つ線形仮的衝撃価格の両方を作成しながら,エージェントが危険資産を清算する学習問題を考察する。
本稿では,探索と搾取を交互に行うトレーディングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-12T17:16:27Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。