論文の概要: Universal Preprocessing Operators for Embedding Knowledge Graphs with
Literals
- arxiv url: http://arxiv.org/abs/2309.03023v1
- Date: Wed, 6 Sep 2023 14:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 15:15:46.035186
- Title: Universal Preprocessing Operators for Embedding Knowledge Graphs with
Literals
- Title(参考訳): リテラル付き知識グラフ埋め込みのための普遍前処理演算子
- Authors: Patryk Preisner, Heiko Paulheim
- Abstract要約: 知識グラフ埋め込みは知識グラフ(KG)におけるエンティティの密度数値表現である
本稿では,KGを数値情報,時間情報,テキスト情報,画像情報などのリテラルで変換できる汎用プリプロセッシング演算子を提案する。
3つの異なる埋め込み法によるkgbenchデータセットの結果は有望な結果を示した。
- 参考スコア(独自算出の注目度): 2.211868306499727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graph embeddings are dense numerical representations of entities in
a knowledge graph (KG). While the majority of approaches concentrate only on
relational information, i.e., relations between entities, fewer approaches
exist which also take information about literal values (e.g., textual
descriptions or numerical information) into account. Those which exist are
typically tailored towards a particular modality of literal and a particular
embedding method. In this paper, we propose a set of universal preprocessing
operators which can be used to transform KGs with literals for numerical,
temporal, textual, and image information, so that the transformed KGs can be
embedded with any method. The results on the kgbench dataset with three
different embedding methods show promising results.
- Abstract(参考訳): 知識グラフ埋め込みは知識グラフ(KG)内のエンティティの密度の数値表現である。
ほとんどのアプローチはリレーショナル情報、すなわちエンティティ間の関係にのみ焦点を絞っているが、リテラル値(例えば、テキスト記述や数値情報)に関する情報も考慮に入れているアプローチは少ない。
存在するものは典型的にはリテラルの特定のモダリティと特定の埋め込みメソッドに合わせて調整される。
本稿では, 数値, 時間, テキスト, 画像情報のリテラルでKGを変換し, 変換されたKGを任意の手法で埋め込むことのできる, 普遍的な前処理演算子を提案する。
3つの異なる埋め込み法によるkgbenchデータセットの結果は有望な結果を示した。
関連論文リスト
- Inference over Unseen Entities, Relations and Literals on Knowledge Graphs [1.7474352892977463]
知識グラフ埋め込みモデルは、様々な課題に対処するために、トランスダクティブな設定でうまく適用されている。
本稿では、エンティティとリレーションのバイトペアエンコードされたサブワード単位のシーケンスから三重埋め込みを構築するための注意的バイトペアエンコーディング層(BytE)を提案する。
BytEは、知識グラフの埋め込みモデルに、エンティティやリレーションではなくサブワード単位の埋め込みを学習させるため、重み付けによる大規模な機能の再利用につながる。
論文 参考訳(メタデータ) (2024-10-09T10:20:54Z) - Text-To-KG Alignment: Comparing Current Methods on Classification Tasks [2.191505742658975]
知識グラフ(KG)は、事実情報の密集した構造化された表現を提供する。
最近の研究は、追加のコンテキストとしてKGから情報を取得するパイプラインモデルの作成に重点を置いている。
現在のメソッドが、アライメントされたサブグラフがクエリに完全に関連しているシナリオとどのように比較されているかは分かっていない。
論文 参考訳(メタデータ) (2023-06-05T13:45:45Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
本稿では,知識三重項の自然言語記述と構造情報とを共同で組み込むことを提案する。
本手法は,学習済み言語モデルを微調整することで,完了作業のための知識グラフを埋め込む。
各種知識グラフベンチマーク実験により,本手法の最先端性能を実証した。
論文 参考訳(メタデータ) (2022-09-19T02:41:02Z) - StarGraph: A Coarse-to-Fine Representation Method for Large-Scale
Knowledge Graph [0.6445605125467573]
本稿では,近隣情報を大規模知識グラフに活用するための新しい手法であるStarGraphを提案する。
提案手法は,ogbl-wikikg2データセットの有効性を検証する。
論文 参考訳(メタデータ) (2022-05-27T19:32:45Z) - Knowledge Graph Completion with Text-aided Regularization [2.8361571014635407]
知識グラフ補完は、可能なエンティティを推定することによって知識グラフ/ベースを拡張するタスクである。
従来のアプローチは主に、グラフ固有の既存のグラフィカル情報の使用に重点を置いている。
我々は、既存のkg埋め込みフレームワークがより良い予測結果に達するのを助けるために、抽出または生のテキスト情報を使用する多くの方法を試みる。
論文 参考訳(メタデータ) (2021-01-22T06:10:09Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Entity Type Prediction in Knowledge Graphs using Embeddings [2.7528170226206443]
オープンナレッジグラフ(DBpedia、Wikidata、YAGOなど)は、データマイニングと情報検索の分野における多様なアプリケーションのバックボーンとして認識されている。
これらのKGのほとんどは、スナップショットからの自動情報抽出またはユーザーが提供する情報蓄積によって作成されるか、ウィキペディアを用いて作成される。
これらのKGの型情報は、しばしばうるさい、不完全、不正確である。
KG埋め込みを用いたエンティティタイピングのためのマルチラベル分類手法を提案する。
論文 参考訳(メタデータ) (2020-04-28T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。