LieDetect: Detection of representation orbits of compact Lie groups from point clouds
- URL: http://arxiv.org/abs/2309.03086v2
- Date: Fri, 20 Jun 2025 20:03:34 GMT
- Title: LieDetect: Detection of representation orbits of compact Lie groups from point clouds
- Authors: Henrique Ennes, Raphaƫl Tinarrage,
- Abstract summary: We suggest a new algorithm to estimate representations of compact Lie groups from finite samples of their orbits.<n>The knowledge of the representation type permits the reconstruction of its orbit, which is useful for identifying the Lie group that generates the action.<n>The algorithm is tested for synthetic data up to dimension 32, as well as real-life applications in image analysis, harmonic analysis, density estimation, equivariant neural networks, chemical conformational spaces, and classical mechanics systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We suggest a new algorithm to estimate representations of compact Lie groups from finite samples of their orbits. Different from other reported techniques, our method allows the retrieval of the precise representation type as a direct sum of irreducible representations. Moreover, the knowledge of the representation type permits the reconstruction of its orbit, which is useful for identifying the Lie group that generates the action, from a finite list of candidates. Our algorithm is general for any compact Lie group, but only instantiations for SO(2), T^d, SU(2), and SO(3) are considered. Theoretical guarantees of robustness in terms of Hausdorff and Wasserstein distances are derived. Our tools are drawn from geometric measure theory, computational geometry, and optimization on matrix manifolds. The algorithm is tested for synthetic data up to dimension 32, as well as real-life applications in image analysis, harmonic analysis, density estimation, equivariant neural networks, chemical conformational spaces, and classical mechanics systems, achieving very accurate results.
Related papers
- Riemannian Optimization for Distance Geometry: A Study of Convergence, Robustness, and Incoherence [6.422262171968397]
The Euclidean Distance Geometry (EDG) problem arises in a broad range of applications, including sensor network localization, molecular conformation, and manifold learning.<n>In this paper, we propose a framework for solving the EDG problem by formulating it as a low-rank matrix completion task over the space of positive semi-definite Gram matrices.<n>The available distance measurements are encoded as expansion coefficients in a non-orthogonal basis, and optimization over the Gram matrix implicitly enforces geometric consistency through the triangle inequality.
arXiv Detail & Related papers (2025-07-31T18:40:42Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Boundary Detection Algorithm Inspired by Locally Linear Embedding [8.259071011958254]
We propose a method for detecting boundary points inspired by the widely used locally linear embedding algorithm.
We implement this method using two nearest neighborhood search schemes: the $epsilon$-radius ball scheme and the $K$-nearest neighbor scheme.
arXiv Detail & Related papers (2024-06-26T16:05:57Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
We mathematically define this novel formulation and coin it as neural latent geometry search (NLGS)
We propose a novel notion of distance between candidate latent geometries based on the Gromov-Hausdorff distance from metric geometry.
We then design a graph search space based on the notion of smoothness between latent geometries and employ the calculated as an additional inductive bias.
arXiv Detail & Related papers (2023-09-09T14:29:22Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
This letter introduces two improved algorithms that significantly speed up the discovery of symmetry transformations.
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
arXiv Detail & Related papers (2023-07-10T20:25:44Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Fiberwise dimensionality reduction of topologically complex data with
vector bundles [0.0]
We propose to model topologically complex datasets using vector bundles.
The base space accounts for the large scale topology, while the fibers account for the local geometry.
This allows one to reduce the dimensionality of the fibers, while preserving the large scale topology.
arXiv Detail & Related papers (2022-06-13T22:53:46Z) - Highly Scalable and Provably Accurate Classification in Poincare Balls [40.82908295137667]
We establish a unified framework for learning scalable and simple hyperbolic linear classifiers with provable performance guarantees.
Our results include a new hyperbolic and second-order perceptron algorithm as well as an efficient and highly accurate convex optimization setup for hyperbolic support vector machine classifiers.
Their performance accuracies on synthetic data sets comprising millions of points, as well as on complex real-world data sets such as single-cell RNA-seq expression measurements, CIFAR10, Fashion-MNIST and mini-ImageNet.
arXiv Detail & Related papers (2021-09-08T16:59:39Z) - Optimization and Sampling Under Continuous Symmetry: Examples and Lie
Theory [26.555110725656963]
We show examples of Lieant's theorem, Lie groups, Lie algebras, and the Harish-Chandra--Itzyintegrals formulas.
We then present an introduction to optimization theory -- an indispensable mathematical toolkit for capturing continuous symmetries.
arXiv Detail & Related papers (2021-09-02T16:44:44Z) - The decomposition of the higher-order homology embedding constructed
from the $k$-Laplacian [5.076419064097734]
The null space of the $k$-th order Laplacian $mathbfmathcal L_k$ encodes the non-trivial topology of a manifold or a network.
We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components.
arXiv Detail & Related papers (2021-07-23T00:40:01Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Disentangling by Subspace Diffusion [72.1895236605335]
We show that fully unsupervised factorization of a data manifold is possible if the true metric of the manifold is known.
Our work reduces the question of whether unsupervised metric learning is possible, providing a unifying insight into the geometric nature of representation learning.
arXiv Detail & Related papers (2020-06-23T13:33:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.