論文の概要: Split-Boost Neural Networks
- arxiv url: http://arxiv.org/abs/2309.03167v1
- Date: Wed, 6 Sep 2023 17:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 14:37:50.203227
- Title: Split-Boost Neural Networks
- Title(参考訳): 分割ブーストニューラルネットワーク
- Authors: Raffaele Giuseppe Cestari, Gabriele Maroni, Loris Cannelli, Dario
Piga, Simone Formentin
- Abstract要約: 本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
- 参考スコア(独自算出の注目度): 1.1549572298362787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The calibration and training of a neural network is a complex and
time-consuming procedure that requires significant computational resources to
achieve satisfactory results. Key obstacles are a large number of
hyperparameters to select and the onset of overfitting in the face of a small
amount of data. In this framework, we propose an innovative training strategy
for feed-forward architectures - called split-boost - that improves performance
and automatically includes a regularizing behaviour without modeling it
explicitly. Such a novel approach ultimately allows us to avoid explicitly
modeling the regularization term, decreasing the total number of
hyperparameters and speeding up the tuning phase. The proposed strategy is
tested on a real-world (anonymized) dataset within a benchmark medical
insurance design problem.
- Abstract(参考訳): ニューラルネットワークの校正とトレーニングは複雑で時間を要する手順であり、良好な結果を得るためにはかなりの計算資源を必要とする。
鍵となる障害は、選択するための多数のハイパーパラメータと、少量のデータに直面したオーバーフィッティングの開始である。
本稿では,フィードフォワードアーキテクチャのための革新的なトレーニング戦略であるsplit-boostを提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避け、ハイパーパラメータの総数を減らし、チューニングフェーズを高速化する。
提案された戦略は、ベンチマーク医療保険設計問題内の実世界(匿名)データセット上でテストされる。
関連論文リスト
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
ディープオペレータネットワーク(DeepNet)は、様々な科学的・工学的応用における複雑な力学のリアルタイム予測に成功している。
本稿では,DeepONetのトレーニングを取り入れたランダムサンプリング手法を提案する。
実験の結果,訓練中にトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性と堅牢性が向上し,複雑な物理系のモデリングにおけるフレームワークの性能向上に期待できる道筋が得られた。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
ネットワークの機能マップにスパシティを爆発させることは、推論のレイテンシを低減する方法の1つです。
そこで本研究では,セミ構造化されたアクティベーション空間を小さなランタイム修正によって活用する手法を提案する。
当社のアプローチでは,ImageNetデータセット上のResNet18モデルに対して,最小精度が1.1%の1.25倍の速度向上を実現している。
論文 参考訳(メタデータ) (2023-09-12T22:28:53Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。