Temporal Inductive Path Neural Network for Temporal Knowledge Graph
Reasoning
- URL: http://arxiv.org/abs/2309.03251v3
- Date: Thu, 25 Jan 2024 08:34:05 GMT
- Title: Temporal Inductive Path Neural Network for Temporal Knowledge Graph
Reasoning
- Authors: Hao Dong, Pengyang Wang, Meng Xiao, Zhiyuan Ning, Pengfei Wang,
Yuanchun Zhou
- Abstract summary: Reasoning on Temporal Knowledge Graph (TKG) aims to predict future facts based on historical occurrences.
Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation.
We propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective.
- Score: 16.984588879938947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph
(KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial
task that aims to predict future facts based on historical occurrences. The key
challenge lies in uncovering structural dependencies within historical
subgraphs and temporal patterns. Most existing approaches model TKGs relying on
entity modeling, as nodes in the graph play a crucial role in knowledge
representation. However, the real-world scenario often involves an extensive
number of entities, with new entities emerging over time. This makes it
challenging for entity-dependent methods to cope with extensive volumes of
entities, and effectively handling newly emerging entities also becomes a
significant challenge. Therefore, we propose Temporal Inductive Path Neural
Network (TiPNN), which models historical information in an entity-independent
perspective. Specifically, TiPNN adopts a unified graph, namely history
temporal graph, to comprehensively capture and encapsulate information from
history. Subsequently, we utilize the defined query-aware temporal paths on a
history temporal graph to model historical path information related to queries
for reasoning. Extensive experiments illustrate that the proposed model not
only attains significant performance enhancements but also handles inductive
settings, while additionally facilitating the provision of reasoning evidence
through history temporal graphs.
Related papers
- Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding [23.39851202825318]
temporal knowledge graphs (TKGs) must explore and reason over temporally evolving facts adequately.
Existing TKG approaches face two main challenges, i.e., the limited capability to model arbitrary timestamps continuously and the lack of rich inference patterns under temporal constraints.
We propose an innovative TKGE method (PTBox) via decomposition-based temporal representation and embedding-based entity representation.
arXiv Detail & Related papers (2024-05-01T07:27:04Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
This paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS)
LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively.
It also integrates timestamp semantics into graph attention calculations and time-aware decoders.
arXiv Detail & Related papers (2023-12-04T08:23:09Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning [25.84105067110878]
Temporal knowledge graph (TKG) reasoning aims to predict the future missing facts based on historical information.
We propose a novel architecture modeling with relation feature of TKG, namely aDAptivE path-MemOry Network (DaeMon)
DaeMon adaptively models the temporal path information between query subject and each object candidate across history time.
arXiv Detail & Related papers (2023-04-25T06:33:08Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
We introduce Time-LowFER, a family of parameter-efficient and time-aware extensions of the low-rank tensor factorization model LowFER.
Noting several limitations in current approaches to represent time, we propose a cycle-aware time-encoding scheme for time features.
We implement our methods in a unified temporal knowledge graph embedding framework, focusing on time-sensitive data processing.
arXiv Detail & Related papers (2022-04-10T22:24:11Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.