Let Quantum Neural Networks Choose Their Own Frequencies
- URL: http://arxiv.org/abs/2309.03279v2
- Date: Mon, 22 Apr 2024 15:55:41 GMT
- Title: Let Quantum Neural Networks Choose Their Own Frequencies
- Authors: Ben Jaderberg, Antonio A. Gentile, Youssef Achari Berrada, Elvira Shishenina, Vincent E. Elfving,
- Abstract summary: We generalize quantum models to include a set of trainable parameters in the generator, leading to a trainable frequency (TF) quantum model.
We numerically demonstrate how TF models can learn generators with desirable properties for solving the task at hand.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized quantum circuits as machine learning models are typically well described by their representation as a partial Fourier series of the input features, with frequencies uniquely determined by the feature map's generator Hamiltonians. Ordinarily, these data-encoding generators are chosen in advance, fixing the space of functions that can be represented. In this work we consider a generalization of quantum models to include a set of trainable parameters in the generator, leading to a trainable frequency (TF) quantum model. We numerically demonstrate how TF models can learn generators with desirable properties for solving the task at hand, including non-regularly spaced frequencies in their spectra and flexible spectral richness. Finally, we showcase the real-world effectiveness of our approach, demonstrating an improved accuracy in solving the Navier-Stokes equations using a TF model with only a single parameter added to each encoding operation. Since TF models encompass conventional fixed frequency models, they may offer a sensible default choice for variational quantum machine learning.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Constrained and Vanishing Expressivity of Quantum Fourier Models [2.7746258981078196]
We show a new correlation between the Fourier coefficients of the quantum model and its encoding gates.
We also show a phenomenon of vanishing expressivity in certain settings.
These two behaviors imply novel forms of constraints which limit the expressivity of PQCs.
arXiv Detail & Related papers (2024-03-14T14:05:24Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Well-conditioned multi-product formulas for hardware-friendly
Hamiltonian simulation [1.433758865948252]
We show how to design MPFs that do not amplify the hardware and sampling errors, and demonstrate their performance.
We observe an error reduction of up to an order of magnitude when compared to a product formula approach by suppressing hardware noise with Pauli Twirling, pulse efficient transpilation, and a novel zero-noise extrapolation based on scaled cross-resonance pulses.
arXiv Detail & Related papers (2022-07-22T18:00:05Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
We introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural network.
The dynamics of this many-body system is formulated in terms of a Markovian master equation of Lindblad type.
arXiv Detail & Related papers (2021-09-21T12:48:49Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - The effect of data encoding on the expressive power of variational
quantum machine learning models [0.7734726150561088]
Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions.
Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators.
arXiv Detail & Related papers (2020-08-19T18:00:11Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.