Exploring quantum localization with machine learning
- URL: http://arxiv.org/abs/2406.00363v1
- Date: Sat, 1 Jun 2024 08:50:26 GMT
- Title: Exploring quantum localization with machine learning
- Authors: J. Montes, Lenoardo Ermann, Alejandro M. F. Rivas, Florentino Borondo, Gabriel G. Carlo,
- Abstract summary: We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization. Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit, a long standing question in the quantum scattering field. Moreover, the physical meaning built in the model allows for the interpretation of the learning process
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
In quantum physics, even simple data with a well-defined structure at the wave function level can be characterized by extremely complex correlations.
We show that monitoring the neural network weight space while learning quantum statistics allows to develop physical intuition about complex multipartite patterns.
Our findings suggest a fresh look at constructing convolutional neural networks for processing data with non-local patterns.
arXiv Detail & Related papers (2024-08-23T12:45:40Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Impact of the form of weighted networks on the quantum extreme reservoir computation [0.0]
The quantum extreme reservoir computation (QERC) is a versatile quantum neural network model.
We show how a simple Hamiltonian model based on a disordered discrete time crystal with its simple implementation route provides nearly-optimal performance.
arXiv Detail & Related papers (2022-11-15T01:50:47Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
Recently proposed quantum convolutional neural network (QCNN) provides a new framework for using quantum circuits.
We present here the results from training the QCNN by the wavefunctions of the variational quantum eigensolver for the one-dimensional transverse field Ising model (TFIM)
The QCNN can be trained to predict the corresponding phase of wavefunctions around the putative quantum critical point, even though it is trained by wavefunctions far away from it.
arXiv Detail & Related papers (2021-11-09T12:08:49Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.