Constrained and Vanishing Expressivity of Quantum Fourier Models
- URL: http://arxiv.org/abs/2403.09417v1
- Date: Thu, 14 Mar 2024 14:05:24 GMT
- Title: Constrained and Vanishing Expressivity of Quantum Fourier Models
- Authors: Hela Mhiri, Leo Monbroussou, Mario Herrero-Gonzalez, Slimane Thabet, Elham Kashefi, Jonas Landman,
- Abstract summary: We show a new correlation between the Fourier coefficients of the quantum model and its encoding gates.
We also show a phenomenon of vanishing expressivity in certain settings.
These two behaviors imply novel forms of constraints which limit the expressivity of PQCs.
- Score: 2.7746258981078196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we highlight an unforeseen behavior of the expressivity of Parameterized Quantum Circuits (PQC) for machine learning. A large class of these models, seen as Fourier Series which frequencies are derived from the encoding gates, were thought to have their Fourier coefficients mostly determined by the trainable gates. Here, we demonstrate a new correlation between the Fourier coefficients of the quantum model and its encoding gates. In addition, we display a phenomenon of vanishing expressivity in certain settings, where some Fourier coefficients vanish exponentially when the number of qubits grows. These two behaviors imply novel forms of constraints which limit the expressivity of PQCs, and therefore imply a new inductive bias for Quantum models. The key concept in this work is the notion of a frequency redundancy in the Fourier series spectrum, which determines its importance. Those theoretical behaviours are observed in numerical simulations.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting [0.9060149007362646]
We apply 1D quantum convolution to address the task of time series forecasting.
By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one.
arXiv Detail & Related papers (2024-04-23T01:35:07Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Let Quantum Neural Networks Choose Their Own Frequencies [0.0]
We generalize quantum models to include a set of trainable parameters in the generator, leading to a trainable frequency (TF) quantum model.
We numerically demonstrate how TF models can learn generators with desirable properties for solving the task at hand.
arXiv Detail & Related papers (2023-09-06T18:00:07Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Fourier expansion in variational quantum algorithms [1.4732811715354455]
We focus on the class of variational circuits, where constant gates are Clifford gates and parameterized gates are generated by Pauli operators.
We give a classical algorithm that computes coefficients of all trigonometric monomials up to a degree $m$ in time bounded by $mathcalO(N2m)$.
arXiv Detail & Related papers (2023-04-07T18:00:01Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Multidimensional Fourier series with quantum circuits [0.0]
We study the expressibility of circuit ansatzes that generate multidimensional Fourier series.
For some ansatzes, the degrees of freedom required for fitting such functions grow faster than the available degrees in the Hilbert space.
We show that we can enlarge the Hilbert space of the circuit by using more qudits or higher local dimensions to meet the degrees of freedom requirements.
arXiv Detail & Related papers (2023-02-07T10:51:37Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
We present a new family of algorithms for learning Fourier-sparse set functions.
In contrast to other work that focused on the Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms.
We demonstrate effectiveness on several real-world applications.
arXiv Detail & Related papers (2020-10-01T14:31:59Z) - The effect of data encoding on the expressive power of variational
quantum machine learning models [0.7734726150561088]
Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions.
Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators.
arXiv Detail & Related papers (2020-08-19T18:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.