論文の概要: Robotic Table Tennis: A Case Study into a High Speed Learning System
- arxiv url: http://arxiv.org/abs/2309.03315v2
- Date: Wed, 19 Feb 2025 18:52:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:55:42.063371
- Title: Robotic Table Tennis: A Case Study into a High Speed Learning System
- Title(参考訳): ロボットテーブルテニス : 高速学習システムの事例研究
- Authors: David B. D'Ambrosio, Jonathan Abelian, Saminda Abeyruwan, Michael Ahn, Alex Bewley, Justin Boyd, Krzysztof Choromanski, Omar Cortes, Erwin Coumans, Tianli Ding, Wenbo Gao, Laura Graesser, Atil Iscen, Navdeep Jaitly, Deepali Jain, Juhana Kangaspunta, Satoshi Kataoka, Gus Kouretas, Yuheng Kuang, Nevena Lazic, Corey Lynch, Reza Mahjourian, Sherry Q. Moore, Thinh Nguyen, Ken Oslund, Barney J Reed, Krista Reymann, Pannag R. Sanketi, Anish Shankar, Pierre Sermanet, Vikas Sindhwani, Avi Singh, Vincent Vanhoucke, Grace Vesom, Peng Xu,
- Abstract要約: 本研究では,人間と数百の卓球アライグが可能な実世界のロボット学習システムを提案する。
本システムは,高度に最適化された知覚サブシステム,高速低遅延ロボットコントローラ,現実世界の損傷を防ぐシミュレーションパラダイムを組み込んだ。
- 参考スコア(独自算出の注目度): 30.30242337602385
- License:
- Abstract: We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.
- Abstract(参考訳): 従来の研究では、何百もの卓球のラリーを人間と持てることが示され、ボールが正確に所望のターゲットに返される能力がある。
このシステムは、高度に最適化された知覚サブシステム、高速低レイテンシロボットコントローラ、現実世界の損傷を防止し、ゼロショット転送のためのポリシーを訓練するシミュレーションパラダイム、そして物理的なロボットに対する自律的なトレーニングと評価を可能にする自動現実環境リセットを組み立てる。
一般に普及しない多くの設計決定を含むシステム記述を補完し、様々な遅延源を緩和することの重要性、トレーニングとデプロイメントの分散シフトの説明、知覚システムの堅牢性、ポリシーのハイパーパラメータへの感受性、アクション空間の選択を明確にする一連の研究を行った。
システムのコンポーネントと実験結果の詳細をデモしたビデオはhttps://youtu.be/uFcnWjB42I0で見ることができる。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Learning to Play Foosball: System and Baselines [0.09642500063568188]
この研究は、科学研究、特にロボット学習の領域において、フォスボールを多用途プラットフォームとして活用する。
本稿では,Fosball の自動表とそれに対応する模擬表を提示し,様々な課題を提示する。
物理フォスボールテーブルを研究フレンドリーなシステムにするために、ゴールキーパーロッドを制御するために、自由な運動鎖を2度の自由度で拡張しました。
論文 参考訳(メタデータ) (2024-07-23T16:11:08Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
我々は,自己中心型RGBビジョンによる完全オンボード計算とセンシングにより,エンドツーエンドのロボットサッカーポリシーを訓練する。
本稿では,マルチエージェントロボットサッカーにおけるエンドツーエンドトレーニングの最初の実演を行う。
論文 参考訳(メタデータ) (2024-05-03T18:41:13Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEARは、ロボットを現実世界の環境に配置し、中断することなく自律的に訓練することを可能にする。
システムはリモート、クラウドソース、非専門家からの非同期フィードバックのみを必要とする、Webインターフェースにロボットエクスペリエンスをストリームする。
論文 参考訳(メタデータ) (2023-10-31T16:43:56Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
本研究では,少数の人間によるデモンストレーションを行い,見えない物体のポーズを学習するロボット学習システムを提案する。
我々は,物体の点群を入力として捉え,物体を異なる初期ロボット状態から把握するための連続的な動作を予測する,厳密な把握ポリシーを訓練する。
我々のデータセットから学んだポリシーは、シミュレーションと現実世界の両方で見えないオブジェクトのポーズをうまく一般化することができる。
論文 参考訳(メタデータ) (2022-09-28T17:51:49Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - Learning to Play Table Tennis From Scratch using Muscular Robots [34.34824536814943]
この研究は、(a)人為的ロボットアームを用いた安全クリティカルな動的タスクを初めて学習し、(b)PAM駆動システムで精度の高い要求問題を学び、(c)本物のボールなしで卓球をするようにロボットを訓練する。
ビデオとデータセットは muscleTT.embodied.ml で入手できる。
論文 参考訳(メタデータ) (2020-06-10T16:43:27Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
実世界で収集されたデータによって継続的に自律的に改善できるロボット学習システムに必要な要素について論じる。
本稿では,このようなシステムの特異なインスタンス化を事例として,デクスタラスな操作を事例として提案する。
我々は人間の介入なしに学習できることを実証し、現実世界の3本指の手で様々な視覚ベースのスキルを習得する。
論文 参考訳(メタデータ) (2020-04-27T03:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。