論文の概要: On the dynamics of multi agent nonlinear filtering and learning
- arxiv url: http://arxiv.org/abs/2309.03557v2
- Date: Tue, 19 Sep 2023 10:13:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 19:00:36.629201
- Title: On the dynamics of multi agent nonlinear filtering and learning
- Title(参考訳): マルチエージェント非線形フィルタリングと学習のダイナミクスについて
- Authors: Sayed Pouria Talebi and Danilo Mandic
- Abstract要約: マルチエージェントシステムは、ダイナミックスを求める分散コンセンサスを通じて、高度に複雑な学習課題を達成することを目的としている。
本稿では非線形フィルタリング/学習力学を用いたマルチエージェントネットワークシステムの挙動について検討する。
- 参考スコア(独自算出の注目度): 2.206852421529135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiagent systems aim to accomplish highly complex learning tasks through
decentralised consensus seeking dynamics and their use has garnered a great
deal of attention in the signal processing and computational intelligence
societies. This article examines the behaviour of multiagent networked systems
with nonlinear filtering/learning dynamics. To this end, a general formulation
for the actions of an agent in multiagent networked systems is presented and
conditions for achieving a cohesive learning behaviour is given. Importantly,
application of the so derived framework in distributed and federated learning
scenarios are presented.
- Abstract(参考訳): マルチエージェントシステムは、ダイナミクスを求める分散コンセンサスを通じて高度に複雑な学習課題を達成することを目的としており、その利用は信号処理や計算知能社会において大きな注目を集めている。
本稿では非線形フィルタリング/学習力学を用いたマルチエージェントネットワークシステムの挙動について検討する。
この目的のために、マルチエージェントネットワークシステムにおけるエージェントの動作に関する一般的な定式化を行い、結束学習行動を達成するための条件を与える。
重要なのは、分散および連合学習シナリオにおけるso派生フレームワークの適用である。
関連論文リスト
- Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Inverse Factorized Q-Learning for Cooperative Multi-agent Imitation
Learning [13.060023718506917]
模倣学習(英: mimicion learning, IL)は、協調型マルチエージェントシステムにおける実証から専門家の行動を模倣する学習の課題である。
本稿では,これらの課題に対処する新しいマルチエージェントILアルゴリズムを提案する。
本手法は,分散Q関数の集約に混在するネットワークを活用することで,集中学習を実現する。
論文 参考訳(メタデータ) (2023-10-10T17:11:20Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Adaptive Multi-Agent Continuous Learning System [1.2752808844888015]
本稿では,自己教師型クラスタリング認識システムを提案する。
このシステムは、いくつかの異なる機能エージェントを使用して、環境の多様な要求に対処する適応性を改善するための接続構造を構築するように設計されている。
論文 参考訳(メタデータ) (2022-12-15T07:39:50Z) - Q-Mixing Network for Multi-Agent Pathfinding in Partially Observable
Grid Environments [62.997667081978825]
部分的に観測可能なグリッド環境におけるマルチエージェントナビゲーションの問題点を考察する。
エージェントがまず、観察を行動にマッピングする方針を学習し、その目的を達成するためにこれらの方針に従うとき、強化学習アプローチを活用することを提案する。
論文 参考訳(メタデータ) (2021-08-13T09:44:47Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。