Neural lasso: a unifying approach of lasso and neural networks
- URL: http://arxiv.org/abs/2309.03770v1
- Date: Thu, 7 Sep 2023 15:17:10 GMT
- Title: Neural lasso: a unifying approach of lasso and neural networks
- Authors: David Delgado, Ernesto Curbelo, Danae Carreras
- Abstract summary: The statistical technique lasso for variable selection is represented through a neural network.
It is observed that, although both the statistical approach and its neural version have the same objective function, they differ due to their optimization.
A new optimization algorithm for identifying the significant variables emerged.
- Score: 0.27624021966289597
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, there is a growing interest in combining techniques
attributed to the areas of Statistics and Machine Learning in order to obtain
the benefits of both approaches. In this article, the statistical technique
lasso for variable selection is represented through a neural network. It is
observed that, although both the statistical approach and its neural version
have the same objective function, they differ due to their optimization. In
particular, the neural version is usually optimized in one-step using a single
validation set, while the statistical counterpart uses a two-step optimization
based on cross-validation. The more elaborated optimization of the statistical
method results in more accurate parameter estimation, especially when the
training set is small. For this reason, a modification of the standard approach
for training neural networks, that mimics the statistical framework, is
proposed. During the development of the above modification, a new optimization
algorithm for identifying the significant variables emerged. Experimental
results, using synthetic and real data sets, show that this new optimization
algorithm achieves better performance than any of the three previous
optimization approaches.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - The limitation of neural nets for approximation and optimization [0.0]
We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
arXiv Detail & Related papers (2023-11-21T00:21:15Z) - Transformer-Based Learned Optimization [37.84626515073609]
We propose a new approach to learned optimization where we represent the computation's update step using a neural network.
Our innovation is a new neural network architecture inspired by the classic BFGS algorithm.
We demonstrate the advantages of our approach on a benchmark composed of objective functions traditionally used for the evaluation of optimization algorithms.
arXiv Detail & Related papers (2022-12-02T09:47:08Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.