Pilot-reference-free continuous-variable quantum key distribution with
efficient decoy-state analysis
- URL: http://arxiv.org/abs/2309.03789v1
- Date: Thu, 7 Sep 2023 15:40:05 GMT
- Title: Pilot-reference-free continuous-variable quantum key distribution with
efficient decoy-state analysis
- Authors: Anran Jin, Xingjian Zhang, Liang Jiang, Richard V. Penty, and Pei Zeng
- Abstract summary: Continuous-variable quantum key distribution (CV QKD) using optical coherent detectors is practically favorable.
Security analysis and parameter estimation of CV QKD are complicated due to the infinite-dimensional latent Hilbert space.
We present a time-bin-encoding CV protocol with a simple phase-error-based security analysis valid under general coherent attacks.
- Score: 4.738999541025475
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Continuous-variable quantum key distribution (CV QKD) using optical coherent
detectors is practically favorable due to its low implementation cost,
flexibility of wavelength division multiplexing, and compatibility with
standard coherent communication technologies. However, the security analysis
and parameter estimation of CV QKD are complicated due to the
infinite-dimensional latent Hilbert space. Also, the transmission of strong
reference pulses undermines the security and complicates the experiments. In
this work, we tackle these two problems by presenting a time-bin-encoding CV
protocol with a simple phase-error-based security analysis valid under general
coherent attacks. With the key encoded into the relative intensity between two
optical modes, the need for global references is removed. Furthermore, phase
randomization can be introduced to decouple the security analysis of different
photon-number components. We can hence tag the photon number for each round,
effectively estimate the associated privacy using a carefully designed
coherent-detection method, and independently extract encryption keys from each
component. Simulations manifest that the protocol using multi-photon components
increases the key rate by two orders of magnitude compared to the one using
only the single-photon component. Meanwhile, the protocol with four-intensity
decoy analysis is sufficient to yield tight parameter estimation with a
short-distance key-rate performance comparable to the best
Bennett-Brassard-1984 implementation.
Related papers
- Practical No-Switching Continuous-Variable Quantum Key Distribution with
Biased Quadrature Detection [4.559900583044687]
The security of an ideal No-Switching protocol has been proved against general attacks in finite-size regime and composable security framework.
We propose a modified No-Switching protocol with biased quadrature detection, where the asymmetry of the heterodyne detection is modeled to match the practical systems.
An optimization strategy is proposed to achieve the optimal secret key rate by adjusting the transmittance of the beam splitter.
arXiv Detail & Related papers (2024-02-01T02:02:56Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Secret key rate bounds for quantum key distribution with non-uniform
phase randomization [0.0]
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources.
It provides the same secret key rate scaling as ideal single-photon sources.
It requires, however, that the phase of each emitted pulse is uniformly random.
arXiv Detail & Related papers (2023-04-07T09:51:13Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Finite-size security of continuous-variable quantum key distribution
with digital signal processing [1.0499611180329804]
We propose a tight and robust method of estimating fidelity of an optical pulse to a coherent state via heterodyne measurements.
We then construct a binary phase CV QKD protocol and prove its security in the finite-key-size regime against general coherent attacks.
arXiv Detail & Related papers (2020-06-08T15:03:39Z) - Tight security bounds for decoy-state quantum key distribution [1.1563829079760959]
The BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol.
Here, we provide the rigorous and optimal analytic formula to solve the above tasks.
Our results can be widely applied to deal with statistical fluctuation in quantum cryptography protocols.
arXiv Detail & Related papers (2020-02-16T07:48:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.