論文の概要: Learning Continuous Exposure Value Representations for Single-Image HDR
Reconstruction
- arxiv url: http://arxiv.org/abs/2309.03900v1
- Date: Thu, 7 Sep 2023 17:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 11:49:23.506851
- Title: Learning Continuous Exposure Value Representations for Single-Image HDR
Reconstruction
- Title(参考訳): 単一画像HDR再構成のための連続露光値表現の学習
- Authors: Su-Kai Chen, Hung-Lin Yen, Yu-Lun Liu, Min-Hung Chen, Hou-Ning Hu,
Wen-Hsiao Peng, Yen-Yu Lin
- Abstract要約: LDRスタックに基づく手法は, 深層学習により生成したHDRスタックからHDR画像を生成する単一像HDR再構成に使用される。
現在の方法では、所定の露光値(EV)を持つスタックを生成し、HDR再構成の品質を制限できる。
本稿では、暗黙の関数を用いて任意のEVでLDR画像を生成する連続露光値表現(CEVR)を提案する。
- 参考スコア(独自算出の注目度): 23.930923461672894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is commonly used to reconstruct HDR images from LDR images. LDR
stack-based methods are used for single-image HDR reconstruction, generating an
HDR image from a deep learning-generated LDR stack. However, current methods
generate the stack with predetermined exposure values (EVs), which may limit
the quality of HDR reconstruction. To address this, we propose the continuous
exposure value representation (CEVR), which uses an implicit function to
generate LDR images with arbitrary EVs, including those unseen during training.
Our approach generates a continuous stack with more images containing diverse
EVs, significantly improving HDR reconstruction. We use a cycle training
strategy to supervise the model in generating continuous EV LDR images without
corresponding ground truths. Our CEVR model outperforms existing methods, as
demonstrated by experimental results.
- Abstract(参考訳): ディープラーニングは一般的に、LDR画像からHDR画像を再構成するために使用される。
LDRスタックに基づく手法は, 深層学習により生成されたHDRスタックからHDR画像を生成する単一像HDR再構成に使用される。
しかし、現在の方法は、hdr再構成の品質を制限できる所定の露光値(evs)を持つスタックを生成する。
そこで本研究では,任意のevを持つldr画像を生成するための暗黙的関数を用いた連続露光値表現(cevr)を提案する。
提案手法は,多様なEVを含む画像の連続スタックを生成し,HDR再構成を大幅に改善する。
我々は,連続したev ldr画像を生成する際に,対応する基底的真理を伴わずにモデルを監視するためのサイクルトレーニング戦略を用いる。
我々のCEVRモデルは,実験結果から示すように,既存の手法よりも優れている。
関連論文リスト
- A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation [0.0]
低ダイナミックレンジ(LDR)から高ダイナミックレンジ(High Dynamic Range)への画像変換は重要なコンピュータビジョン問題である。
現在の最先端の手法のほとんどは、モデルトレーニングのための高品質なペアLDR、データセットを必要とする。
本稿では,改良型サイクル整合対向アーキテクチャを提案し,未ペアのLDR,データセットをトレーニングに利用した。
論文 参考訳(メタデータ) (2024-10-19T11:11:58Z) - Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
我々は、伝統的に「ブラケット」と呼ばれるLDR画像の集合を融合させ、単一のHDR画像を生成するHDR画像キャプチャー文献からインスピレーションを得る。
有効なHDR結果を生成する複数のLDRブラケットを生成するために,複数の復調処理を運用する。
論文 参考訳(メタデータ) (2024-05-23T08:24:22Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - Single-Image HDR Reconstruction by Multi-Exposure Generation [8.656080193351581]
本稿では,HDR再構成のための物理画像形成過程を逆転する弱教師付き学習手法を提案する。
我々のニューラルネットワークは、複数の露光を合成する前に画素照射を再構成するためにカメラ応答を反転させることができる。
実験の結果,提案手法はHDR画像の再構成を効果的に行うことができることがわかった。
論文 参考訳(メタデータ) (2022-10-28T05:12:56Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。