論文の概要: Enabling the Evaluation of Driver Physiology Via Vehicle Dynamics
- arxiv url: http://arxiv.org/abs/2309.04078v1
- Date: Fri, 8 Sep 2023 02:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:13:54.971338
- Title: Enabling the Evaluation of Driver Physiology Via Vehicle Dynamics
- Title(参考訳): 車両動力学による運転生理学評価の実現
- Authors: Rodrigo Ordonez-Hurtado, Bo Wen, Nicholas Barra, Ryan Vimba, Sergio
Cabrero-Barros, Sergiy Zhuk, Jeffrey L. Rogers
- Abstract要約: 本稿では,運転者の生理学を評価できる連結生態系に車両を変換するための構成と手法について述べる。
自動車とデジタルの健康分野からの一連の商用センサーと、車自体からのドライバー入力を統合した。
- 参考スコア(独自算出の注目度): 2.290169426618366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Driving is a daily routine for many individuals across the globe. This paper
presents the configuration and methodologies used to transform a vehicle into a
connected ecosystem capable of assessing driver physiology. We integrated an
array of commercial sensors from the automotive and digital health sectors
along with driver inputs from the vehicle itself. This amalgamation of sensors
allows for meticulous recording of the external conditions and driving
maneuvers. These data streams are processed to extract key parameters,
providing insights into driver behavior in relation to their external
environment and illuminating vital physiological responses. This innovative
driver evaluation system holds the potential to amplify road safety. Moreover,
when paired with data from conventional health settings, it may enhance early
detection of health-related complications.
- Abstract(参考訳): 運転は世界中の多くの人々にとって毎日の日常である。
本稿では,運転者の生理学を評価できる連結生態系に車両を変換するための構成と手法を提案する。
我々は、自動車とデジタルヘルスセクターの一連の商用センサーと、車自体からのドライバー入力を統合した。
このセンサの融合は、外部条件の綿密な記録と運転操作を可能にする。
これらのデータストリームは、キーパラメータを抽出し、運転者の外部環境に関する洞察を与え、重要な生理的反応を照らすために処理される。
この革新的な運転評価システムは、道路安全を増幅する可能性を秘めている。
さらに、従来の健康設定のデータと組み合わせることで、健康関連合併症の早期発見が促進される可能性がある。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - A Scoping Review of Energy-Efficient Driving Behaviors and Applied
State-of-the-Art AI Methods [2.765388013062202]
エネルギー効率の良い運転行動や戦略に関する包括的な調査は行われていない。
多くの最先端AIモデルは、エコフレンドリーな運転スタイルの分析に応用されているが、概観は得られていない。
本稿では、生態的な運転行動とスタイルに関する詳細な文献レビューを行い、エネルギー消費に影響を与える運転要因について分析する。
論文 参考訳(メタデータ) (2024-03-04T13:57:34Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
本稿では,過去10年間に出版されたコンピュータビジョンと自動運転に関する論文をレビューする。
特に、まず自律運転システムの開発について検討し、各国の主要自動車メーカーによって開発されたこれらのシステムを要約する。
そこで, 深度推定, 物体検出, 車線検出, 信号認識など, 自律運転におけるコンピュータビジョン応用の概要を概観する。
論文 参考訳(メタデータ) (2023-11-15T16:41:18Z) - Car-Driver Drowsiness Assessment through 1D Temporal Convolutional
Networks [7.455416595124159]
近年,運転支援システムの科学的進歩は,運転の安全性を高める上で重要な役割を担っている。
最近の報告では、眠気や注意不足による事故の増加が確認されている。
この統合システムにより、運転者の眠気のほぼリアルタイムな分類が可能となり、精度は約96%となる。
論文 参考訳(メタデータ) (2023-07-27T10:59:12Z) - Deep Learning Systems for Advanced Driving Assistance [1.984879854062214]
次世代車は、しばしば人工知能の使用に基づいて革新的なソリューションを通じて、車の運転安全性をインテリジェントに評価する。
安全運転監視は、科学文献で広く扱われるいくつかの方法を用いて行うことができる。
そこで本稿では,自動車運転手の生理的注意状況の再構築に適したアドホックバイオセンシングシステムを用いた革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-05T16:11:18Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
この研究は、ドライバー監視カメラの信号を用いて、車両内の運転者の眠気検知を拡張することを目的としている。
この目的のために、運転シミュレータ実験において、運転者の点眼行動と頭部運動に関連する35の特徴を抽出する。
最高の特徴セットの分析は、運転者の瞬き行動と頭部の動きに対する眠気の影響についての貴重な洞察を与える。
論文 参考訳(メタデータ) (2020-09-28T12:37:38Z) - A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State
Analysis [164.93739293097605]
EEGは運転状態のモニタリングとヒューマンエラー検出において最も効果的な方法の1つであることが証明されている。
本稿では,過去30年間の脳波に基づく運転状態検出システムとその解析アルゴリズムについて論じる。
現在のEEGベースの運転状態監視アルゴリズムは、安全アプリケーションに有望である、と結論付けている。
論文 参考訳(メタデータ) (2020-08-25T18:21:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。