Co-Optimization of Robot Design and Control: Enhancing Performance and Understanding Design Complexity
- URL: http://arxiv.org/abs/2409.08621v1
- Date: Fri, 13 Sep 2024 08:18:01 GMT
- Title: Co-Optimization of Robot Design and Control: Enhancing Performance and Understanding Design Complexity
- Authors: Etor Arza, Frank Veenstra, Tønnes F. Nygaard, Kyrre Glette,
- Abstract summary: Co-optimization of design and control of robots produces a design and control that are both adapted to the task.
We show that retraining the controller of a robot with additional resources after the co-optimization process terminates significantly improves the robot's performance.
- Score: 0.8999666725996974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design (shape) of a robot is usually decided before the control is implemented. This might limit how well the design is adapted to a task, as the suitability of the design is given by how well the robot performs in the task, which requires both a design and a controller. The co-optimization or simultaneous optimization of the design and control of robots addresses this limitation by producing a design and control that are both adapted to the task. In this paper, we investigate some of the challenges inherent in the co-optimization of design and control. We show that retraining the controller of a robot with additional resources after the co-optimization process terminates significantly improves the robot's performance. In addition, we demonstrate that the resources allocated to training the controller for each design influence the design complexity, where simpler designs are associated with lower training budgets. The experimentation is conducted in four publicly available simulation environments for co-optimization of design and control, making the findings more applicable to the general case. The results presented in this paper hope to guide other practitioners in the co-optimization of design and control of robots.
Related papers
- Structural Optimization of Lightweight Bipedal Robot via SERL [6.761861053481078]
This paper introduces the SERL (Structure Evolution Reinforcement Learning) algorithm, which combines reinforcement learning for locomotion tasks with evolution algorithms.
We successfully designed a bipedal robot named Wow Orin, where the optimal leg length are obtained through optimization based on body structure and motor torque.
arXiv Detail & Related papers (2024-08-28T08:34:05Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents [11.449817465618658]
Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent.
This can be challenging when the design space is large.
We propose a multi-fidelity-based exploration strategy to improve the sample efficiency of co-design.
arXiv Detail & Related papers (2023-09-08T02:54:31Z) - SoftZoo: A Soft Robot Co-design Benchmark For Locomotion In Diverse
Environments [111.91255476270526]
We introduce SoftZoo, a soft robot co-design platform for locomotion in diverse environments.
SoftZoo supports an extensive, naturally-inspired material set, including the ability to simulate environments such as flat ground, desert, wetland, clay, ice, snow, shallow water, and ocean.
It provides a variety of tasks relevant for soft robotics, including fast locomotion, agile turning, and path following, as well as differentiable design representations for morphology and control.
arXiv Detail & Related papers (2023-03-16T17:59:50Z) - Meta Reinforcement Learning for Optimal Design of Legged Robots [9.054187238463212]
We present a design optimization framework using model-free meta reinforcement learning.
We show that our approach allows higher performance while not being constrained by predefined motions or gait patterns.
arXiv Detail & Related papers (2022-10-06T08:37:52Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - An End-to-End Differentiable Framework for Contact-Aware Robot Design [37.715596272425316]
We build an end-to-end differentiable framework for contact-aware robot design.
A novel deformation-based parameterization allows for the design of articulated rigid robots with arbitrary, complex geometry.
A differentiable rigid body simulator can handle contact-rich scenarios and computes analytical gradients for a full spectrum of kinematic and dynamic parameters.
arXiv Detail & Related papers (2021-07-15T17:53:44Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z) - A Reference Software Architecture for Social Robots [64.86618385090416]
We propose a series of principles that social robots may benefit from.
These principles lay also the foundations for the design of a reference software architecture for Social Robots.
arXiv Detail & Related papers (2020-07-09T17:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.