論文の概要: PRISM: Leveraging Prototype Patient Representations with Feature-Missing-Aware Calibration for EHR Data Sparsity Mitigation
- arxiv url: http://arxiv.org/abs/2309.04160v5
- Date: Mon, 27 May 2024 10:44:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:08:44.348222
- Title: PRISM: Leveraging Prototype Patient Representations with Feature-Missing-Aware Calibration for EHR Data Sparsity Mitigation
- Title(参考訳): PRISM: EHRデータスカラー化のための特徴ミス対応校正による患者表現の活用
- Authors: Yinghao Zhu, Zixiang Wang, Long He, Shiyun Xie, Xiaochen Zheng, Liantao Ma, Chengwei Pan,
- Abstract要約: PRISMは、類似した患者のプロトタイプ表現を活用することで、データを間接的にインプットするフレームワークである。
PRISMには、ステータスの欠如を考慮した各機能の信頼性を評価する機能信頼モジュールも含まれている。
- 参考スコア(独自算出の注目度): 7.075420686441701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic Health Records (EHRs) contain a wealth of patient data; however, the sparsity of EHRs data often presents significant challenges for predictive modeling. Conventional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies of patient representations. To address these issues, we introduce PRISM, a framework that indirectly imputes data by leveraging prototype representations of similar patients, thus ensuring compact representations that preserve patient information. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature considering missing statuses. Additionally, PRISM introduces a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at https://github.com/yhzhu99/PRISM.
- Abstract(参考訳): EHR(Electronic Health Records)は、患者の豊富なデータを含んでいるが、EHRのデータは、予測モデリングにおいて重要な課題をしばしば示している。
従来のインプット法では、実際のデータとインプットデータの区別が不十分であり、患者の表現の不正確さにつながる。
これらの課題に対処するため,PRISMは類似した患者のプロトタイプ表現を活用し,患者情報を保存するためのコンパクトな表現を確保することで,間接的にデータをインプットするフレームワークである。
PRISMには機能信頼学習モジュールも含まれている。
さらに、PRISMは、不正確なインプット値に対する過度な信頼を回避し、特徴の信頼性を考慮に入れた新しい患者類似度指標を導入した。
MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICUデータセットに関する広範な実験は、PRISMが病院内での死亡率や30日間の受信タスクを予測する上で優れた性能を示し、EHRデータの空間性を扱う上での有効性を示している。
再現性とさらなる研究のために、コードをhttps://github.com/yhzhu99/PRISM.comで公開しました。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction [15.136747790595217]
本稿では,患者の健康状態予測のためのセルフスーパービジョン・ミス・アウェア・リプレッション・ラーニング手法を提案する。
SMARTは、欠落を認識し、高次表現の学習に集中することにより、欠落データに対するより優れた一般化と堅牢性を促進する。
本研究では,6つのEHRタスクに対する広範囲な実験を通じてSMARTの有効性を検証し,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-15T02:19:34Z) - Learnable Prompt as Pseudo-Imputation: Reassessing the Necessity of
Traditional EHR Data Imputation in Downstream Clinical Prediction [16.638760651750744]
既存のディープラーニングトレーニングプロトコルでは、欠落した値を再構築するために統計情報や計算モデルを使用する必要がある。
本稿では,Pseudo Imputation (PAI) を新たなトレーニングプロトコルとして紹介する。
PAIはもはやインプットデータを導入しないが、ダウンストリームモデルの暗黙の選好を欠落値にモデル化するための学習可能なプロンプトを構築する。
論文 参考訳(メタデータ) (2024-01-30T07:19:36Z) - IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
本研究では、患者動態を学習し、個人の人口動態の特徴や治療に合わせたパーソナライズされた値を生成する新しいディープラーニングモデルを提案する。
提案モデルであるIGNITEは,2段階の注意を付加した条件付き2変分オートエンコーダを用いて,個人に対して欠落した値を生成する。
IGNITEは,データ再構成の欠如やタスク予測において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-09T07:57:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
本稿では,患者が訪問する時間スタンプと滞在時間との間に不規則な間隔を対応させるSETORと呼ばれる,エンドツーエンドの頑健なトランスフォーマーモデルを提案する。
2つの実世界の医療データセットで実施された実験により、シーケンシャルな診断予測モデルSETORは、従来の最先端のアプローチよりも優れた予測結果が得られることが示された。
論文 参考訳(メタデータ) (2021-09-07T13:09:55Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。