論文の概要: Score-PA: Score-based 3D Part Assembly
- arxiv url: http://arxiv.org/abs/2309.04220v1
- Date: Fri, 8 Sep 2023 09:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 13:53:16.337330
- Title: Score-PA: Score-based 3D Part Assembly
- Title(参考訳): Score-PA: スコアベースの3D部品アセンブリ
- Authors: Junfeng Cheng, Mingdong Wu, Ruiyuan Zhang, Guanqi Zhan, Chao Wu, Hao
Dong
- Abstract要約: Score-based 3D Part Assembly framework (Score-PA) を導入する。
スコアベースのメソッドは、推論段階では通常時間がかかります。
本稿では,FPC(Fast Predictor-Corrector Sampler)と呼ばれる新しいアルゴリズムを導入し,サンプリングプロセスを高速化する。
- 参考スコア(独自算出の注目度): 6.25037277839849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous 3D part assembly is a challenging task in the areas of robotics
and 3D computer vision. This task aims to assemble individual components into a
complete shape without relying on predefined instructions. In this paper, we
formulate this task from a novel generative perspective, introducing the
Score-based 3D Part Assembly framework (Score-PA) for 3D part assembly. Knowing
that score-based methods are typically time-consuming during the inference
stage. To address this issue, we introduce a novel algorithm called the Fast
Predictor-Corrector Sampler (FPC) that accelerates the sampling process within
the framework. We employ various metrics to assess assembly quality and
diversity, and our evaluation results demonstrate that our algorithm
outperforms existing state-of-the-art approaches. We release our code at
https://github.com/J-F-Cheng/Score-PA_Score-based-3D-Part-Assembly.
- Abstract(参考訳): 自律的な3D部品組み立ては、ロボット工学と3Dコンピュータビジョンの分野で難しい課題である。
このタスクは、事前に定義された命令に頼ることなく、個々のコンポーネントを完全な形で組み立てることを目的としている。
本稿では,Score-based 3D Part Assembly framework (Score-PA) を導入し,この課題を新たな生成的視点から定式化する。
スコアベースのメソッドは、推論段階では通常時間がかかります。
この問題に対処するため,FPC(Fast Predictor-Corrector Sampler)と呼ばれる新しいアルゴリズムを導入し,フレームワーク内のサンプリングプロセスを高速化する。
我々は,集合の質と多様性を評価するために,様々な指標を用いて評価を行った。
コードをhttps://github.com/J-F-Cheng/Score-PA_Score-based-3D-Part-Assemblyでリリースします。
関連論文リスト
- 3D Geometric Shape Assembly via Efficient Point Cloud Matching [59.241448711254485]
Proxy Match Transform (PMT) は、部品の配向面間の信頼性の高いマッチングを可能にする、高次特徴変換層である。
PMT を基盤として,幾何学的組立作業のための新しいフレームワーク Proxy Match TransformeR (PMTR) を導入する。
我々は,Breaking Badの大規模3次元幾何形状集合ベンチマークデータセットを用いてPMTRの評価を行った。
論文 参考訳(メタデータ) (2024-07-15T08:50:02Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
3D環境を理解するには、きめ細かい風景を理解する必要がある。
教師なしの方法で3次元シーンのインスタンスセグメンテーションを予測することを提案する。
平均精度は13.3%,F1スコアは9.1%向上した。
論文 参考訳(メタデータ) (2024-03-24T22:53:16Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
対応性に基づく最適化は3次元シーン再構成の基盤となるが、3次元ビデオオブジェクト検出では研究されていない。
オブジェクト中心の時間対応学習と特徴量付きオブジェクトバンドル調整を備えた、エンドツーエンドで最適化可能なオブジェクト検出器であるBA-Detを提案する。
論文 参考訳(メタデータ) (2023-03-27T17:39:39Z) - AOP-Net: All-in-One Perception Network for Joint LiDAR-based 3D Object
Detection and Panoptic Segmentation [9.513467995188634]
AOP-NetはLiDARベースのマルチタスクフレームワークで、3Dオブジェクトの検出とパノプティクスのセグメンテーションを組み合わせたものである。
AOP-Netは、nuScenesベンチマークにおける3Dオブジェクト検出とパノプティクスセグメンテーションの両タスクについて、最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-02T05:31:53Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
我々は,MDPが現在,3Dアプリケーションにおける予測の有用性を評価するのに有効な指標に頼っていることを論じる。
これにより、2Dベースの距離を最適化するのではなく、シーンの3D構造を正確に認識し、推定に向けて改善する新しい手法の設計と開発が制限される。
本稿では,MDP手法の3次元幾何評価に適した指標セットと,提案手法に不可欠な室内ベンチマークRIO-D3Dを提案する。
論文 参考訳(メタデータ) (2022-03-15T17:50:54Z) - ICM-3D: Instantiated Category Modeling for 3D Instance Segmentation [19.575077449759377]
Instaniated categorization を用いて3Dインスタンスを分割するシングルステップ手法 ICM-3D を提案する。
我々は、ICM-3Dの有効性を検証するための広範な実験を行い、複数のフレームワーク、バックボーン、ベンチマークにまたがるインスピレーションされた性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-26T13:08:37Z) - Generative 3D Part Assembly via Dynamic Graph Learning [34.108515032411695]
部品組み立ては、3Dコンピュータビジョンとロボット工学において難しいが重要な課題だ。
本稿では,反復グラフニューラルネットワークをバックボーンとして活用する,アセンブリ指向の動的グラフ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-14T04:26:42Z) - Learning 3D Part Assembly from a Single Image [20.175502864488493]
そこで本研究では,新たな問題として,学習ベースのソリューションとともに,シングルイメージの3Dパーツアセンブリを導入する。
本報告では, 家具組立において, 部品の完全な集合と, 組み立て物全体を描いた一枚の画像から, 家具組立の設定について検討する。
論文 参考訳(メタデータ) (2020-03-21T21:19:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。