論文の概要: Graded Modal Types for Integrity and Confidentiality
- arxiv url: http://arxiv.org/abs/2309.04324v1
- Date: Fri, 8 Sep 2023 13:40:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:20:50.044127
- Title: Graded Modal Types for Integrity and Confidentiality
- Title(参考訳): 統合性と信頼のための傾斜モード型
- Authors: Daniel Marshall, Dominic Orchard,
- Abstract要約: グレード型システムでは、アノテート型を付加情報で追跡することで、プログラムの異なる特性を追跡できる。
例えば、インフォメーションフロー制御では、型はセキュリティレベルの格子によってグレードされ、非干渉特性が自動的に検証され、強制される。
信頼された出力が信頼できない入力に依存してはならないことを示すプロパティであるIntegrationityは、この文脈では検討されていない。
状況は、線形一意性と型の両方をグレードフレームワークに組み込むという最近の作業と類似しており、このフレーミングを使用して、相互に整合性と機密性の両方を強制できることを示しています。
- 参考スコア(独自算出の注目度): 0.25782420501870285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graded type systems, such as the one underlying the Granule programming language, allow various different properties of a program's behaviour to be tracked via annotating types with additional information, which we call grades. One example of such a property, often used as a case study in prior work on graded types, is information flow control, in which types are graded by a lattice of security levels allowing noninterference properties to be automatically verified and enforced. These typically focus on one particular aspect of security, however, known as confidentiality; public outputs are prohibited from depending on private inputs. Integrity, a property specifying that trusted outputs must not depend on untrusted inputs, has not been examined in this context. This short paper aims to remedy this omission. It is well-known that confidentiality and integrity are in some sense dual properties, but simply reversing the ordering of the security lattice turns out to be unsatisfactory for the purpose of combining both kinds of property in a single system, at least in our setting. We analogize the situation to recent work on embedding both linear and uniqueness types in a graded framework, and use this framing to demonstrate that we can enforce both integrity and confidentiality alongside one another. The main idea is to add an additional flavour of modality annotated for integrity, such that the existing graded comonad for tracking confidentiality now also acts as a relative monad over the new modality, with rules allowing information to flow from trusted to public to private.
- Abstract(参考訳): グラニュルプログラミング言語の基盤となっているようなグレード型システムは、プログラムの振る舞いの様々な異なる特性を、付加的な情報を持つアノテーション型によって追跡できるようにします。
このような特性の例としては、グレードされた型に関する先行研究でよく用いられる情報フロー制御があり、非干渉プロパティの自動検証と強制を可能にするセキュリティレベルの格子によって、型をグレードする。
これらは一般的にセキュリティの特定の側面、すなわち機密性に焦点が当てられている。
信頼された出力が信頼できない入力に依存してはならないことを示すプロパティであるIntegrationityは、この文脈では検討されていない。
この短い論文は、この省略を是正することを目的としている。
機密性や整合性が何らかの意味で二重性であることはよく知られているが、セキュリティ格子の順序を逆転させるだけでは、少なくとも我々の設定では、一つのシステムで両方のプロパティを組み合わせることに満足できないことが判明した。
状況は、線形型と一意型の両方をグレードフレームワークに組み込むという最近の作業と類似しており、このフレーミングを使用して、相互に整合性と機密性の両方を強制できることを示しています。
主要な考え方は、機密性を追跡するための既存の格付けされたコモナドが、新しいモダリティに対する相対的なモナドとして機能し、信頼できる情報から民間への情報の流れを許すような、整合性に注釈付けされたモダリティの風味を追加することである。
関連論文リスト
- Security Properties through the Lens of Modal Logic [4.548429316641551]
モーダル論理を用いたコンピュータシステムのセキュリティに関する推論フレームワークを提案する。
機密性、完全性、堅牢な非分類化、透過的な支持の様々なバリエーションを表現するために、フォーマリズムをどのように使うかを示します。
論文 参考訳(メタデータ) (2023-09-18T07:37:12Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - On Differentially Private Online Predictions [74.01773626153098]
オンラインプロセスを扱うために,共同微分プライバシーのインタラクティブなバリエーションを導入する。
グループプライバシ、コンポジション、ポストプロセッシングの(適切なバリエーション)を満たすことを実証する。
次に、オンライン分類の基本設定において、インタラクティブな共同プライバシーのコストについて検討する。
論文 参考訳(メタデータ) (2023-02-27T19:18:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - A General Framework for Auditing Differentially Private Machine Learning [27.99806936918949]
本稿では,差分プライベートな学習者によって与えられるプライバシ保証を統計的に評価する枠組みを提案する。
本研究は、微分プライベート機械学習実装のプライバシを実証的に評価する一般的な手法を開発する。
論文 参考訳(メタデータ) (2022-10-16T21:34:18Z) - Uncertainty-Autoencoder-Based Privacy and Utility Preserving Data Type
Conscious Transformation [3.7315964084413173]
プライバシ・ユーティリティのトレードオフ問題に対処する逆学習フレームワークを2つの条件で提案する。
データタイプの無知な条件下では、プライバシメカニズムは、正確に1つのクラスを表す、カテゴリ機能の1ホットエンコーディングを提供する。
データ型認識条件下では、分類変数は各クラスごとに1つのスコアの集合で表される。
論文 参考訳(メタデータ) (2022-05-04T08:40:15Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - No free lunch theorem for security and utility in federated learning [20.481170500480395]
複数のパーティがそれぞれのデータからモデルを共同で学習するフェデレートされた学習シナリオでは、適切なアルゴリズムを選択するための2つの相反する目標が存在する。
本稿では、プライバシ損失とユーティリティ損失のトレードオフを統一情報理論の観点から定式化する一般的なフレームワークについて説明する。
論文 参考訳(メタデータ) (2022-03-11T09:48:29Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z) - Why Should I Trust a Model is Private? Using Shifts in Model Explanation
for Evaluating Privacy-Preserving Emotion Recognition Model [35.016050900061]
本稿では,モデルの有効性を評価するために解釈可能な手法を用いることに焦点をあてる。
プライバシーを守るための一般的な方法が、プライバシー保護の人間の認識とどのように一致しないかを示します。
評価者の傾きを評価し、特定のタスクのモデルを選択するためのクラウドソーシング実験を行います。
論文 参考訳(メタデータ) (2021-04-18T09:56:41Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。