FLUE: Federated Learning with Un-Encrypted model weights
- URL: http://arxiv.org/abs/2407.18750v1
- Date: Fri, 26 Jul 2024 14:04:57 GMT
- Title: FLUE: Federated Learning with Un-Encrypted model weights
- Authors: Elie Atallah,
- Abstract summary: Federated learning enables devices to collaboratively train a shared model while keeping training data locally stored.
Recent research emphasizes using encrypted model parameters during training.
This paper introduces a novel federated learning algorithm, leveraging coded local gradients without encryption.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning enables diverse devices to collaboratively train a shared model while keeping training data locally stored, avoiding the need for centralized cloud storage. Despite existing privacy measures, concerns arise from potential reverse engineering of gradients, even with added noise, revealing private data. To address this, recent research emphasizes using encrypted model parameters during training. This paper introduces a novel federated learning algorithm, leveraging coded local gradients without encryption, exchanging coded proxies for model parameters, and injecting surplus noise for enhanced privacy. Two algorithm variants are presented, showcasing convergence and learning rates adaptable to coding schemes and raw data characteristics. Two encryption-free implementations with fixed and random coding matrices are provided, demonstrating promising simulation results from both federated optimization and machine learning perspectives.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
We propose a novel FL framework named coded federated learning (SCFL) that leverages coded computing techniques.
In SCFL, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding noise to the projected local dataset.
We show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods.
arXiv Detail & Related papers (2022-11-08T09:58:36Z) - Privacy-Preserving Federated Learning via System Immersion and Random
Matrix Encryption [4.258856853258348]
Federated learning (FL) has emerged as a privacy solution for collaborative distributed learning where clients train AI models directly on their devices instead of sharing their data with a centralized (potentially adversarial) server.
We propose a Privacy-Preserving Federated Learning (PPFL) framework built on the synergy of matrix encryption and system immersion tools from control theory.
We show that our algorithm provides the same level of accuracy and convergence rate as the standard FL with a negligible cost while revealing no information about clients' data.
arXiv Detail & Related papers (2022-04-05T21:28:59Z) - Secure Neuroimaging Analysis using Federated Learning with Homomorphic
Encryption [14.269757725951882]
Federated learning (FL) enables distributed computation of machine learning models over disparate, remote data sources.
Recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site.
We propose a framework for secure FL using fully-homomorphic encryption (FHE)
arXiv Detail & Related papers (2021-08-07T12:15:52Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
This paper presents the first gradient-free federated learning framework called GRAFFL.
It uses implicit information derived from each participating institution to learn posterior distributions of parameters.
We propose the GRAFFL-based Bayesian mixture model to serve as a proof-of-concept of the framework.
arXiv Detail & Related papers (2020-08-29T07:19:44Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.