Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties
- URL: http://arxiv.org/abs/2309.04478v1
- Date: Fri, 4 Aug 2023 02:04:52 GMT
- Title: Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties
- Authors: Sheng Gong, Shuo Wang, Taishan Zhu, Yang Shao-Horn, and Jeffrey C.
Grossman
- Abstract summary: This paper introduces a novel approach to multimodal machine learning in materials science via composition-structure bimodal learning.
The proposed COmposition-Structure Bimodal Network (COSNet) is designed to enhance learning and predictions of experimentally measured materials properties that have incomplete structure information.
- Score: 4.495968252019426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread application of multimodal machine learning models like GPT-4
has revolutionized various research fields including computer vision and
natural language processing. However, its implementation in materials
informatics remains underexplored, despite the presence of materials data
across diverse modalities, such as composition and structure. The effectiveness
of machine learning models trained on large calculated datasets depends on the
accuracy of calculations, while experimental datasets often have limited data
availability and incomplete information. This paper introduces a novel approach
to multimodal machine learning in materials science via composition-structure
bimodal learning. The proposed COmposition-Structure Bimodal Network (COSNet)
is designed to enhance learning and predictions of experimentally measured
materials properties that have incomplete structure information. Bimodal
learning significantly reduces prediction errors across distinct materials
properties including Li conductivity in solid electrolyte, band gap, refractive
index, dielectric constant, energy, and magnetic moment, surpassing
composition-only learning methods. Furthermore, we identified that data
augmentation based on modal availability plays a pivotal role in the success of
bimodal learning.
Related papers
- Foundation Model for Composite Materials and Microstructural Analysis [49.1574468325115]
We present a foundation model specifically designed for composite materials.
Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features.
During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data.
arXiv Detail & Related papers (2024-11-10T19:06:25Z) - Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
We exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches.
We demonstrate that the more accurate energy data can improve the accuracy of structure prediction.
We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction.
arXiv Detail & Related papers (2024-10-14T03:11:33Z) - Multi-Task Multi-Fidelity Learning of Properties for Energetic Materials [34.8008617873679]
We find that multi-task neural networks can learn from multi-modal data and outperform single-task models trained for specific properties.
As expected, the improvement is more significant for data-scarce properties.
This approach is widely applicable to fields outside energetic materials.
arXiv Detail & Related papers (2024-08-21T12:54:26Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Efficient Surrogate Models for Materials Science Simulations: Machine
Learning-based Prediction of Microstructure Properties [0.0]
Several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models.
We develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science.
arXiv Detail & Related papers (2023-09-01T07:29:44Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Benchmarking Active Learning Strategies for Materials Optimization and
Discovery [17.8738267360992]
We present a reference dataset to benchmark active learning strategies in the form of various acquisition functions.
We discuss the relationship between algorithm performance, materials search space, complexity, and the incorporation of prior knowledge.
arXiv Detail & Related papers (2022-04-12T14:27:33Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.