論文の概要: Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks
- arxiv url: http://arxiv.org/abs/2309.04558v1
- Date: Fri, 8 Sep 2023 19:21:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 17:50:34.319921
- Title: Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks
- Title(参考訳): 注意型ディープニューラルネットワークによる太陽フレア予測に向けて
- Authors: Chetraj Pandey, Anli Ji, Rafal A. Angryk, Berkay Aydin
- Abstract要約: 太陽フレア予測は宇宙天気予報の中心的な問題である。
我々は、フルディスクのバイナリフレア予測を行うための注意に基づくディープラーニングモデルを開発した。
本モデルでは、フルディスク磁気画像から、アクティブ領域に対応する顕著な特徴を学習することができる。
- 参考スコア(独自算出の注目度): 1.1624569521079424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solar flare prediction is a central problem in space weather forecasting and
recent developments in machine learning and deep learning accelerated the
adoption of complex models for data-driven solar flare forecasting. In this
work, we developed an attention-based deep learning model as an improvement
over the standard convolutional neural network (CNN) pipeline to perform
full-disk binary flare predictions for the occurrence of $\geq$M1.0-class
flares within the next 24 hours. For this task, we collected compressed images
created from full-disk line-of-sight (LoS) magnetograms. We used data-augmented
oversampling to address the class imbalance issue and used true skill statistic
(TSS) and Heidke skill score (HSS) as the evaluation metrics. Furthermore, we
interpreted our model by overlaying attention maps on input magnetograms and
visualized the important regions focused on by the model that led to the
eventual decision. The significant findings of this study are: (i) We
successfully implemented an attention-based full-disk flare predictor ready for
operational forecasting where the candidate model achieves an average
TSS=0.54$\pm$0.03 and HSS=0.37$\pm$0.07. (ii) we demonstrated that our
full-disk model can learn conspicuous features corresponding to active regions
from full-disk magnetogram images, and (iii) our experimental evaluation
suggests that our model can predict near-limb flares with adept skill and the
predictions are based on relevant active regions (ARs) or AR characteristics
from full-disk magnetograms.
- Abstract(参考訳): 太陽フレア予測は宇宙天気予報の中心的な問題であり、最近の機械学習とディープラーニングの発展により、データ駆動型太陽フレア予測における複雑なモデルの採用が加速された。
本研究では,標準畳み込みニューラルネットワーク(CNN)パイプラインの改良として注目に基づくディープラーニングモデルを構築し,今後24時間以内に$\geq$M1.0級フレアが発生するためのフルディスクバイナリフレア予測を行った。
そこで本研究では,全ディスク線(LoS)磁気グラムから生成された圧縮画像を収集した。
データ提供型オーバーサンプリングを用いてクラス不均衡問題に対処し,評価指標としてtrue skill statistic (tss) とheidke skill score (hss) を用いた。
さらに,入力磁気図上にアテンションマップをオーバーレイすることで,モデルに焦点を絞った重要な領域を可視化し,最終的な決定を導いた。
本研究の意義は次のとおりである。
(i) 平均的TSS=0.54$\pm$0.03 および HSS=0.37$\pm$0.07 を達成する運用予測のための注意ベースのフルディスクフレア予測器の実装に成功した。
(ii)フルディスクモデルはフルディスク磁図画像から活性領域に対応する特徴を識別できることを実証した。
以上の結果から,本モデルではアデプティブ・スキルで近縁なフレアを予測できる可能性が示唆され,その予測は関連する活動領域(AR)や,フルディスク磁気グラムのAR特性に基づく。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Unveiling the Potential of Deep Learning Models for Solar Flare
Prediction in Near-Limb Regions [1.2699007098398802]
本研究の目的は、24時間予測窓を用いて、$geq$M級太陽フレアの予測におけるディープラーニングモデルの性能を評価することである。
我々は、転写学習を用いて、AlexNet、VGG16、ResNet34の3つのよく知られたディープラーニングアーキテクチャを訓練した。
本研究は,全円板磁気図から複雑な空間パターンを識別できることを示す。
論文 参考訳(メタデータ) (2023-09-25T19:30:02Z) - Exploring Deep Learning for Full-disk Solar Flare Prediction with
Empirical Insights from Guided Grad-CAM Explanations [4.085931783551287]
本研究は, 太陽フレアの予測を行うために, フルディスク深層学習モデルを提案することにより, 太陽フレア予測研究を進めた。
分析の結果,フルディスクの太陽フレア予測は活動領域特性と一致していることが明らかとなった。
論文 参考訳(メタデータ) (2023-08-30T02:24:09Z) - Explainable Deep Learning-based Solar Flare Prediction with post hoc
Attention for Operational Forecasting [0.6299766708197884]
本稿では,深層学習に基づくフルディスク太陽フレア予測モデルのポストホック解析について述べる。
我々は24時間以内のフレア発生を予測するために、1時間ごとのフルディスク線磁図画像と2値予測モードを選択した。
分析の結果,太陽フレアのフルディスク予測は,活動領域の特徴と一致していることがわかった。
論文 参考訳(メタデータ) (2023-08-04T19:33:25Z) - Explaining Full-disk Deep Learning Model for Solar Flare Prediction
using Attribution Methods [0.6882042556551611]
本研究では,太陽フレア予測モデルを提案する。
実際のスキル統計(TSS)とハイドケスキルスコア(HSS)を用いて、モデル全体の性能を評価する。
我々の分析では、太陽フレアのフルディスク予測が活動領域(AR)の特徴と一致していることが判明した。
論文 参考訳(メタデータ) (2023-07-29T03:18:56Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Towards Coupling Full-disk and Active Region-based Flare Prediction for
Operational Space Weather Forecasting [0.5872014229110215]
本稿では, 太陽フレア予測システムの訓練と展開を行うための新しい手法を提案する。
フルディスクモードでは、深層学習モデルを用いて全ディスクラインオブサイト磁気グラム上で予測を行う。
アクティブなリージョンベースモデルでは、各アクティブなリージョンに対して個別に予測が発行される。
論文 参考訳(メタデータ) (2022-08-11T22:34:44Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。