論文の概要: Large Scale Evaluation of Deep Learning-based Explainable Solar Flare Forecasting Models with Attribution-based Proximity Analysis
- arxiv url: http://arxiv.org/abs/2411.18070v1
- Date: Wed, 27 Nov 2024 05:43:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:45.742545
- Title: Large Scale Evaluation of Deep Learning-based Explainable Solar Flare Forecasting Models with Attribution-based Proximity Analysis
- Title(参考訳): 帰属型確率解析を用いた深層学習に基づく説明可能な太陽フレア予測モデルの大規模評価
- Authors: Temitope Adeyeha, Chetraj Pandey, Berkay Aydin,
- Abstract要約: 太陽フレア予測のための深層学習モデルの解釈可能性を評価するための新しい枠組みを提案する。
本研究は、24時間窓内のフレアを予測するために、全ディスクラインオブライト(LoS)マグネティックグラム画像に基づいてトレーニングされた2つのモデルを比較した。
以上の結果から,モデルの予測は活動領域の特徴と異なる程度に一致していることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate and reliable predictions of solar flares are essential due to their potentially significant impact on Earth and space-based infrastructure. Although deep learning models have shown notable predictive capabilities in this domain, current evaluations often focus on accuracy while neglecting interpretability and reliability--factors that are especially critical in operational settings. To address this gap, we propose a novel proximity-based framework for analyzing post hoc explanations to assess the interpretability of deep learning models for solar flare prediction. Our study compares two models trained on full-disk line-of-sight (LoS) magnetogram images to predict $\geq$M-class solar flares within a 24-hour window. We employ the Guided Gradient-weighted Class Activation Mapping (Guided Grad-CAM) method to generate attribution maps from these models, which we then analyze to gain insights into their decision-making processes. To support the evaluation of explanations in operational systems, we introduce a proximity-based metric that quantitatively assesses the accuracy and relevance of local explanations when regions of interest are known. Our findings indicate that the models' predictions align with active region characteristics to varying degrees, offering valuable insights into their behavior. This framework enhances the evaluation of model interpretability in solar flare forecasting and supports the development of more transparent and reliable operational systems.
- Abstract(参考訳): 太陽フレアの正確かつ信頼性の高い予測は、地球や宇宙ベースのインフラに潜在的に重大な影響を与えるため不可欠である。
ディープラーニングモデルは、この領域で顕著な予測能力を示しているが、現在の評価は、特に運用環境で重要な解釈可能性と信頼性を無視しながら、正確性に重点を置いていることが多い。
このギャップに対処するために,太陽フレア予測のための深層学習モデルの解釈可能性を評価するために,ポストホックの説明を解析するための新しい近接ベースフレームワークを提案する。
本研究は、全円線(LoS)磁気グラム画像に基づいて訓練された2つのモデルを比較し、24時間窓内において$$\geq$M級の太陽フレアを予測した。
我々は,これらのモデルから帰属マップを生成するために,ガイドグラディエント重み付きクラス活性化マッピング(Guided Grad-CAM)法を用いて,意思決定プロセスの洞察を得る。
運用システムにおける説明の精度評価を支援するために,関心領域が分かっている場合の局所説明の正確さと妥当性を定量的に評価する近接指標を提案する。
以上の結果から,モデルの予測は活動領域の特徴と異なる程度に一致していることが示唆された。
この枠組みは、太陽フレア予測におけるモデル解釈可能性の評価を強化し、より透明で信頼性の高い運用システムの開発を支援する。
関連論文リスト
- Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF [0.0]
本研究の目的は、太陽フレアとその起源領域の隠れた関係と進化的特性を明らかにすることである。
True Skill Statistic (TSS) とHeidke Skill Score (HSS) の双方で平均5%の増加が認められた。
論文 参考訳(メタデータ) (2024-09-06T18:12:05Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
我々は、オフラインモデルに基づく逆強化学習(IRL)に対するベイズ的アプローチを考える。
提案フレームワークは,専門家の報酬関数と環境力学の主観的モデルとを同時推定することにより,既存のオフラインモデルベースIRLアプローチとは異なる。
本分析は, 専門家が環境の高精度なモデルを持つと考えられる場合, 評価政策が堅牢な性能を示すという新たな知見を提示する。
論文 参考訳(メタデータ) (2023-09-15T17:37:09Z) - Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks [1.1624569521079424]
太陽フレア予測は宇宙天気予報の中心的な問題である。
我々は、フルディスクのバイナリフレア予測を行うための注意に基づくディープラーニングモデルを開発した。
本モデルでは、フルディスク磁気画像から、アクティブ領域に対応する顕著な特徴を学習することができる。
論文 参考訳(メタデータ) (2023-09-08T19:21:10Z) - Exploring Deep Learning for Full-disk Solar Flare Prediction with
Empirical Insights from Guided Grad-CAM Explanations [4.085931783551287]
本研究は, 太陽フレアの予測を行うために, フルディスク深層学習モデルを提案することにより, 太陽フレア予測研究を進めた。
分析の結果,フルディスクの太陽フレア予測は活動領域特性と一致していることが明らかとなった。
論文 参考訳(メタデータ) (2023-08-30T02:24:09Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Explainable Deep Learning-based Solar Flare Prediction with post hoc
Attention for Operational Forecasting [0.6299766708197884]
本稿では,深層学習に基づくフルディスク太陽フレア予測モデルのポストホック解析について述べる。
我々は24時間以内のフレア発生を予測するために、1時間ごとのフルディスク線磁図画像と2値予測モードを選択した。
分析の結果,太陽フレアのフルディスク予測は,活動領域の特徴と一致していることがわかった。
論文 参考訳(メタデータ) (2023-08-04T19:33:25Z) - Explaining Full-disk Deep Learning Model for Solar Flare Prediction
using Attribution Methods [0.6882042556551611]
本研究では,太陽フレア予測モデルを提案する。
実際のスキル統計(TSS)とハイドケスキルスコア(HSS)を用いて、モデル全体の性能を評価する。
我々の分析では、太陽フレアのフルディスク予測が活動領域(AR)の特徴と一致していることが判明した。
論文 参考訳(メタデータ) (2023-07-29T03:18:56Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。