論文の概要: A Versatile Graph Learning Approach through LLM-based Agent
- arxiv url: http://arxiv.org/abs/2309.04565v2
- Date: Sun, 1 Sep 2024 13:12:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 22:35:08.316061
- Title: A Versatile Graph Learning Approach through LLM-based Agent
- Title(参考訳): LLMエージェントによる多言語グラフ学習手法
- Authors: Lanning Wei, Huan Zhao, Xiaohan Zheng, Zhiqiang He, Quanming Yao,
- Abstract要約: LLMに基づくエージェントを用いた多目的グラフ学習手法を提案する。
多様なプロファイル,ツール,機能,人間体験を備えたLCMエージェントを複数開発する。
多様なタスクやグラフを評価することで、エージェントの正しい結果と同等の性能が提案手法の汎用性を示している。
- 参考スコア(独自算出の注目度): 33.37921145183175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing versatile graph learning approaches is important, considering the diverse graphs and tasks existing in real-world applications. Existing methods have attempted to achieve this target through automated machine learning techniques, pre-training and fine-tuning strategies, and large language models. However, these methods are not versatile enough for graph learning, as they work on either limited types of graphs or a single task. In this paper, we propose to explore versatile graph learning approaches with LLM-based agents, and the key insight is customizing the graph learning procedures for diverse graphs and tasks. To achieve this, we develop several LLM-based agents, equipped with diverse profiles, tools, functions and human experience. They collaborate to configure each procedure with task and data-specific settings step by step towards versatile solutions, and the proposed method is dubbed GL-Agent. By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method, especially in complex scenarios.The low resource cost and the potential to use open-source LLMs highlight the efficiency of GL-Agent.
- Abstract(参考訳): 多様なグラフやタスクが現実世界のアプリケーションに存在することを考慮し、汎用的なグラフ学習アプローチを設計することが重要である。
既存の手法では、機械学習の自動化、事前学習と微調整の戦略、大規模言語モデルを通じて、この目標を達成しようとしている。
しかし、これらの手法はグラフ学習に十分な汎用性を持っていない。
本稿では,LLMをベースとしたエージェントを用いた多目的グラフ学習手法を提案する。
そこで我々は, 多様なプロファイル, ツール, 機能, ヒューマンエクスペリエンスを備えた LLM ベースのエージェントを開発した。
提案手法をGL-Agentと呼ぶことで,各手順をタスクとデータ固有の設定ステップで協調的に構成する。
多様なタスクやグラフに基づいて評価することにより,提案手法の汎用性,特に複雑なシナリオにおいて,エージェントの正しい結果と同等の性能が示され,資源コストの低さとオープンソースのLLMの利用の可能性は,GL-Agentの効率性を浮き彫りにしている。
関連論文リスト
- GraphRouter: A Graph-based Router for LLM Selections [13.463815950807874]
Graphは、大規模言語モデルの文脈的および適応的な選択のためのグラフベースのアプローチである。
Graphは既存のルータを大幅に上回り、12.3%の最小パフォーマンス向上を実現している。
この研究は、LLMの文脈的および適応的な選択のためのグラフベースのアプローチを実現し、現実世界のアプリケーションに対する洞察を提供する。
論文 参考訳(メタデータ) (2024-10-04T18:02:48Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
グラフニューラルネットワーク(GNN)は、異なるグラフタスクやデータセットに適用されるたびに、再トレーニングされる必要がある。
GNNとLarge Language Models(LLM)の強みをシームレスに統合する新しいフレームワークMusteGraphを提案する。
実験結果から,異なるグラフタスクの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-03-02T09:27:32Z) - Towards Versatile Graph Learning Approach: from the Perspective of Large
Language Models [40.58843080489752]
大きな言語モデル(LLM)は、豊富な知識と人間のような知性のために潜在的な解決策を提供する。
本稿では LLM を用いた多目的グラフ学習手法の設計のための新しい概念的プロトタイプを提案する。
論文 参考訳(メタデータ) (2024-02-18T16:43:21Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompterは、グラフ情報とLLM(Large Language Models)をソフトプロンプトで整合させるように設計されたフレームワークである。
このフレームワークは、グラフ関連タスクの予測子としてLLMの実質的な機能を明らかにしている。
論文 参考訳(メタデータ) (2024-02-15T23:09:42Z) - All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining [18.955565096212183]
大規模言語モデル (LLM) はコンピュータビジョン (CV) と自然言語処理 (NLP) の分野に革命をもたらした。
LLMの最も注目すべき進歩の1つは、単一のモデルが複数のドメインにまたがる広範囲で多様なデータセットでトレーニングされていることである。
論文 参考訳(メタデータ) (2024-02-15T09:55:39Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
少ないショット学習は、ラベル付きデータしか持たない新しいタスクに、以前のタスクから学んだ知識を適応させることを目的としている。
少数ショット学習に関する研究文献は、大きな多様性を示し、異なるアルゴリズムは、しばしば異なる少数ショット学習シナリオで優れている。
本稿では,メタナビゲータ(Meta Navigator)について紹介する。
論文 参考訳(メタデータ) (2021-09-13T07:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。