論文の概要: Integrating Graphs with Large Language Models: Methods and Prospects
- arxiv url: http://arxiv.org/abs/2310.05499v1
- Date: Mon, 9 Oct 2023 07:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 07:01:07.905321
- Title: Integrating Graphs with Large Language Models: Methods and Prospects
- Title(参考訳): グラフと大規模言語モデルの統合:方法と展望
- Authors: Shirui Pan, Yizhen Zheng, Yixin Liu
- Abstract要約: 大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
- 参考スコア(独自算出の注目度): 68.37584693537555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) such as GPT-4 have emerged as frontrunners,
showcasing unparalleled prowess in diverse applications, including answering
queries, code generation, and more. Parallelly, graph-structured data, an
intrinsic data type, is pervasive in real-world scenarios. Merging the
capabilities of LLMs with graph-structured data has been a topic of keen
interest. This paper bifurcates such integrations into two predominant
categories. The first leverages LLMs for graph learning, where LLMs can not
only augment existing graph algorithms but also stand as prediction models for
various graph tasks. Conversely, the second category underscores the pivotal
role of graphs in advancing LLMs. Mirroring human cognition, we solve complex
tasks by adopting graphs in either reasoning or collaboration. Integrating with
such structures can significantly boost the performance of LLMs in various
complicated tasks. We also discuss and propose open questions for integrating
LLMs with graph-structured data for the future direction of the field.
- Abstract(参考訳): GPT-4のような大規模言語モデル(LLM)が最前線として登場し、クエリの応答やコード生成など、様々なアプリケーションで非並列の進歩を見せている。
グラフ構造化データ(本質的なデータ型)は、現実のシナリオで広く普及している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では,これらの積分を2つのカテゴリに分岐する。
1つ目はLLMをグラフ学習に利用し、LLMは既存のグラフアルゴリズムを拡張できるだけでなく、様々なグラフタスクの予測モデルとしても機能する。
逆に、第2のカテゴリは、llmの進歩におけるグラフの重要な役割を強調する。
人間の認知を反映し、推論とコラボレーションの両方でグラフを採用することで複雑なタスクを解決します。
このような構造と統合することで、様々な複雑なタスクにおいてLLMの性能を大幅に向上させることができる。
また、LLMとグラフ構造化データを統合するためのオープンな質問についても検討し、提案する。
関連論文リスト
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
我々は、グラフ学習に適用された最新の最先端の大規模言語モデルについて、詳細なレビューを行う。
フレームワーク設計に基づいて既存の手法を分類する新しい分類法を提案する。
各フレームワークの長所と短所について検討し,今後の研究への可能性を強調する。
論文 参考訳(メタデータ) (2024-05-10T18:05:37Z) - A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications [4.777453721753589]
大規模言語モデル(LLM)は、様々なNLPおよびマルチモードタスクを扱う強力な一般化能力を示した。
グラフ学習モデルと比較して、LLMはグラフタスクの一般化の課題に対処する上で、優れたアドバンテージを持っている。
LLM-based generative graph analysis (LLM-GGA) の重要な問題点を3つのカテゴリで検討した。
論文 参考訳(メタデータ) (2024-04-23T07:39:24Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。