Detailed balance in mixed quantum-classical mapping approaches
- URL: http://arxiv.org/abs/2309.04686v3
- Date: Fri, 17 Nov 2023 06:54:12 GMT
- Title: Detailed balance in mixed quantum-classical mapping approaches
- Authors: Graziano Amati, Jonathan R. Mannouch, and Jeremy O. Richardson
- Abstract summary: A violation of detailed limits poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics.
We prove that MASH is guaranteed to describe the exact thermalization behaviour of all quantum$ mapping approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The violation of detailed balance poses a serious problem for the majority of
current quasiclassical methods for simulating nonadiabatic dynamics. In order
to analyze the severity of the problem, we predict the long-time limits of the
electronic populations according to various quasiclassical mapping approaches,
by applying arguments from classical ergodic theory. Our analysis confirms that
regions of the mapping space that correspond to negative populations, which
most mapping approaches introduce in order to go beyond the Ehrenfest
approximation, pose the most serious issue for reproducing the correct
thermalization behaviour. This is because inverted potentials, which arise from
negative electronic populations entering into the nuclear force, can result in
trajectories unphysically accelerating off to infinity. The recently developed
mapping approach to surface hopping (MASH) provides a simple way of avoiding
inverted potentials, while retaining an accurate description of the dynamics.
We prove that MASH, unlike any other quasiclassical approach, is guaranteed to
describe the exact thermalization behaviour of all
quantum$\unicode{x2013}$classical systems, confirming it as one of the most
promising methods for simulating nonadiabatic dynamics in real condensed-phase
systems.
Related papers
- Recovering complete positivity of non-Markovian quantum dynamics with Choi-proximity regularization [0.5461938536945721]
A relevant problem in the theory of open quantum systems is the lack of complete positivity of dynamical maps obtained after weak-coupling approximations.
We propose a numerical method to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary original dynamical map.
arXiv Detail & Related papers (2023-09-28T10:29:43Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quasiclassical approaches to the generalized quantum master equation [0.0]
The generalized quantum master equation (GQME) expresses correlation functions in terms of a non-Markovian equation of motion.
We study the approximate solution of the GQME, obtained by calculating the kernels with two methods, namely Ehrenfest mean-field theory and spin mapping.
We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels.
arXiv Detail & Related papers (2022-09-02T14:14:05Z) - CD-ROM: Complemented Deep-Reduced Order Model [2.02258267891574]
This paper proposes a deep learning based closure modeling approach for classical POD-Galerkin reduced order models (ROM)
The proposed approach is theoretically grounded, using neural networks to approximate well studied operators.
The capabilities of the CD-ROM approach are demonstrated on two classical examples from Computational Fluid Dynamics, as well as a parametric case, the Kuramoto-Sivashinsky equation.
arXiv Detail & Related papers (2022-02-22T09:05:06Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Generalized Discrete Truncated Wigner Approximation for Nonadiabtic
Quantum-Classical Dynamics [0.0]
We introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA)
GDTWA samples the electron degrees of freedom in a discrete phase space, and forbids an unphysical growth of electronic state populations.
Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
arXiv Detail & Related papers (2021-04-14T21:53:35Z) - Dynamical robustness of topological end states in nonreciprocal
Su-Schrieffer-Heeger models with open boundary conditions [0.41998444721319217]
We study the dynamics of an initial end state in nonreciprocal Su-Schrieffer-Heeger models under open boundary conditions.
We find that it is dynamically more robust than its Hermitian counterpart, because the non-Hermitian skin effect can suppress the part leaking to the bulk sites.
arXiv Detail & Related papers (2020-08-28T06:07:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Systematic large flavor fTWA approach to interaction quenches in the
Hubbard model [55.2480439325792]
We study the nonequilibrium dynamics after an interaction quench in the two-dimensional Hubbard model using the recently introduced fermionic truncated Wigner approximation (fTWA)
We show that fTWA is exact at least up to and including the prethermalization dynamics.
arXiv Detail & Related papers (2020-07-09T20:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.