論文の概要: Analysis of Disinformation and Fake News Detection Using Fine-Tuned
Large Language Model
- arxiv url: http://arxiv.org/abs/2309.04704v1
- Date: Sat, 9 Sep 2023 07:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 16:57:21.087046
- Title: Analysis of Disinformation and Fake News Detection Using Fine-Tuned
Large Language Model
- Title(参考訳): 微調整大型言語モデルを用いた偽情報および偽ニュース検出の分析
- Authors: Bohdan M. Pavlyshenko
- Abstract要約: 微調整のLlama 2モデルは、テキストの深い分析を行い、複雑なスタイルや物語を明らかにすることができる。
名前付きエンティティの抽出された感情は、教師付き機械学習モデルにおける予測的特徴と見なすことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper considers the possibility of fine-tuning Llama 2 large language
model (LLM) for the disinformation analysis and fake news detection. For
fine-tuning, the PEFT/LoRA based approach was used. In the study, the model was
fine-tuned for the following tasks: analysing a text on revealing
disinformation and propaganda narratives, fact checking, fake news detection,
manipulation analytics, extracting named entities with their sentiments. The
obtained results show that the fine-tuned Llama 2 model can perform a deep
analysis of texts and reveal complex styles and narratives. Extracted
sentiments for named entities can be considered as predictive features in
supervised machine learning models.
- Abstract(参考訳): 本稿では, 偽ニュース検出と偽情報解析におけるLlama 2大言語モデル(LLM)の微調整の可能性を検討する。
微調整にはPEFT/LoRAベースのアプローチが用いられた。
このモデルでは, 偽情報やプロパガンダの物語を明らかにするテキストの分析, 事実確認, 偽ニュースの検出, 操作分析, 名前付きエンティティを感情で抽出した。
その結果,微調整されたLlama 2モデルはテキストの深い分析を行い,複雑なスタイルや物語を明らかにすることができた。
名前付きエンティティに対する感情抽出は、教師付き機械学習モデルにおける予測的特徴と見なすことができる。
関連論文リスト
- Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainerは、言語ビジョンモデルを活用することで、マルチモーダルなグローバルな説明可能性を実現する新しいフレームワークである。
最適化されたテキストプロンプトに条件付けされた拡散モデルを使用し、クラス出力を最大化する画像を合成する。
生成した視覚的記述の分析により、バイアスと突発的特徴の自動識別が可能になる。
論文 参考訳(メタデータ) (2024-04-03T10:11:22Z) - Decoding News Narratives: A Critical Analysis of Large Language Models in Framing Detection [10.301985230669684]
本稿では,ニュース見出しにおけるフレーミングの検出において,GPT-4,GPT-3.5 Turbo,FLAN-T5モデルを包括的に分析する。
我々はこれらのモデルを,ゼロショット,ドメイン内例による少数ショット,クロスドメイン例,モデルが予測を説明する設定など,さまざまなシナリオで評価した。
論文 参考訳(メタデータ) (2024-02-18T15:27:48Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Financial News Analytics Using Fine-Tuned Llama 2 GPT Model [0.0]
微調整のLlama 2モデルはマルチタスクの財務ニュース分析を行うことができる。
名前付きエンティティの抽出された感情は、機械学習モデルにおける予測的特徴と見なすことができる。
論文 参考訳(メタデータ) (2023-08-24T18:58:10Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
逆イベント(ADE)抽出は、デジタル製薬における中核的なタスクの1つである。
我々は、非公式テキストを用いたADE抽出のための19のトランスフォーマーモデルを評価する。
分析の最後には、実験データから導出可能なテイクホームメッセージのリストを同定する。
論文 参考訳(メタデータ) (2023-06-08T15:25:24Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for
Text Summarization [14.787106201073154]
SummVisは抽象要約を視覚化するためのオープンソースツールです。
テキスト要約に関連するモデル、データ、評価メトリクスの詳細な分析を可能にする。
論文 参考訳(メタデータ) (2021-04-15T17:13:00Z) - Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake
News Detection [7.29381091750894]
偽ニュース検出のためのトランスフォーマーに基づく言語モデルの微調整手法を提案する。
まず、個々のモデルのトークン語彙を専門用語の実際の意味論のために拡張する。
最後に、普遍言語モデルRoBERTaとドメイン固有モデルCT-BERTによって抽出された予測特徴を、複数の層認識によって融合させ、微細で高レベルな特定の表現を統合する。
論文 参考訳(メタデータ) (2021-01-14T09:05:42Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
テキストのディープフェイク検出のためのグラフベースモデルを提案する。
我々のアプローチは、ある文書の事実構造をエンティティグラフとして表現する。
本モデルでは,機械生成テキストと人文テキストの事実構造の違いを識別することができる。
論文 参考訳(メタデータ) (2020-10-15T02:35:31Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。