論文の概要: A Hybrid Attention Framework for Fake News Detection with Large Language Models
- arxiv url: http://arxiv.org/abs/2501.11967v1
- Date: Tue, 21 Jan 2025 08:26:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:07.438922
- Title: A Hybrid Attention Framework for Fake News Detection with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたフェイクニュース検出のためのハイブリッドアテンションフレームワーク
- Authors: Xiaochuan Xu, Peiyang Yu, Zeqiu Xu, Jiani Wang,
- Abstract要約: 本稿では,テキスト統計特徴と深い意味的特徴を統合することによって,偽ニュースを識別・分類する新しい枠組みを提案する。
提案手法は,大規模言語モデルの文脈理解能力を利用してテキスト解析を行う。
F1スコアは1.5%向上し,既存手法よりも大幅に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the rapid growth of online information, the spread of fake news has become a serious social challenge. In this study, we propose a novel detection framework based on Large Language Models (LLMs) to identify and classify fake news by integrating textual statistical features and deep semantic features. Our approach utilizes the contextual understanding capability of the large language model for text analysis and introduces a hybrid attention mechanism to focus on feature combinations that are particularly important for fake news identification. Extensive experiments on the WELFake news dataset show that our model significantly outperforms existing methods, with a 1.5\% improvement in F1 score. In addition, we assess the interpretability of the model through attention heat maps and SHAP values, providing actionable insights for content review strategies. Our framework provides a scalable and efficient solution to deal with the spread of fake news and helps build a more reliable online information ecosystem.
- Abstract(参考訳): オンライン情報の急成長に伴い、偽ニュースの普及は深刻な社会的課題となっている。
本研究では,テキストの統計的特徴と深い意味的特徴を統合することによって,偽ニュースを識別・分類する,Large Language Models (LLMs) に基づく新たな検出フレームワークを提案する。
本稿では,テキスト分析における大規模言語モデルの文脈理解機能を活用し,特に偽ニュース識別に重要な特徴の組み合わせに着目した,ハイブリッドアテンション機構を提案する。
WELFakeニュースデータセットの大規模な実験により、我々のモデルはF1スコアを1.5倍改善し、既存の手法を大きく上回っていることがわかった。
さらに,注意熱マップとSHAP値によるモデルの解釈可能性を評価し,コンテンツレビュー戦略に対する実用的な洞察を提供する。
我々のフレームワークは、フェイクニュースの拡散に対処するスケーラブルで効率的なソリューションを提供し、より信頼性の高いオンライン情報エコシステムを構築するのに役立ちます。
関連論文リスト
- Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI [44.21078435758592]
誤報はコンテンツの作成や拡散が容易なため、急速に広まることがある。
従来のフェイクニュース検出のアプローチは、コンテンツベースの機能にのみ依存することが多い。
本稿では,ソーシャルコンテキストに基づく機能とニュースコンテンツ機能を統合した包括的アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-03T15:49:35Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - No Place to Hide: Dual Deep Interaction Channel Network for Fake News
Detection based on Data Augmentation [16.40196904371682]
本稿では,意味,感情,データ強化の観点から,偽ニュース検出のための新しいフレームワークを提案する。
セマンティックと感情の2つのディープインタラクションチャネルネットワークは、より包括的できめ細かなニュース表現を得るために設計されている。
実験の結果,提案手法は最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-31T13:33:53Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Interpretable Fake News Detection with Topic and Deep Variational Models [2.15242029196761]
我々は,解釈可能な特徴と手法を用いた偽ニュース検出に焦点をあてる。
我々は,テキストニュースの高密度表現を統合した深層確率モデルを開発した。
我々のモデルは最先端の競合モデルに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2022-09-04T05:31:00Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
テキストと視覚データから派生したマルチモーダル特徴を融合させて偽ニュースを検出する新しい手法を提案する。
実験の結果,公開twitterデータセットにおける現在の最先端手法よりも3.1%の精度で性能が向上した。
論文 参考訳(メタデータ) (2021-04-23T08:47:54Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - PIN: A Novel Parallel Interactive Network for Spoken Language
Understanding [68.53121591998483]
既存の RNN ベースのアプローチでは、ID と SF のタスクは、それらの間の相関情報を利用するために、しばしば共同でモデル化される。
SNIPSとATISという2つのベンチマークデータセットによる実験は、我々のアプローチの有効性を実証している。
さらに,事前学習した言語モデルBERTが生成した発話の特徴埋め込みを用いて,提案手法はすべての比較手法の中で最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-09-28T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。