論文の概要: Training of Spiking Neural Network joint Curriculum Learning Strategy
- arxiv url: http://arxiv.org/abs/2309.04737v2
- Date: Mon, 25 Sep 2023 13:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 00:47:59.831467
- Title: Training of Spiking Neural Network joint Curriculum Learning Strategy
- Title(参考訳): スパイクニューラルネットワーク合同カリキュラム学習戦略の学習
- Authors: Lingling Tang, Jiangtao Hu, Hua Yu, Surui Liu, Jielei Chu
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、人間が情報を処理する方法を模倣することを目的としている。
現在のSNNモデルは、すべてのサンプルを平等に扱うが、それは人間の学習の原則と一致しない。
本稿では,SNNにカリキュラム学習を導入するCL-SNNモデルを提案する。
- 参考スコア(独自算出の注目度): 1.9559989943764062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Starting with small and simple concepts, and gradually introducing complex
and difficult concepts is the natural process of human learning. Spiking Neural
Networks (SNNs) aim to mimic the way humans process information, but current
SNNs models treat all samples equally, which does not align with the principles
of human learning and overlooks the biological plausibility of SNNs. To address
this, we propose a CL-SNN model that introduces Curriculum Learning(CL) into
SNNs, making SNNs learn more like humans and providing higher biological
interpretability. CL is a training strategy that advocates presenting easier
data to models before gradually introducing more challenging data, mimicking
the human learning process. We use a confidence-aware loss to measure and
process the samples with different difficulty levels. By learning the
confidence of different samples, the model reduces the contribution of
difficult samples to parameter optimization automatically. We conducted
experiments on static image datasets MNIST, Fashion-MNIST, CIFAR10, and
neuromorphic datasets N-MNIST, CIFAR10-DVS, DVS-Gesture. The results are
promising. To our best knowledge, this is the first proposal to enhance the
biologically plausibility of SNNs by introducing CL.
- Abstract(参考訳): 小さくてシンプルな概念から始まり、徐々に複雑で難しい概念を導入することは、人間の学習の自然なプロセスです。
スパイキングニューラルネットワーク(SNN)は、人間が情報を処理する方法を模倣することを目的としているが、現在のSNNモデルは、すべてのサンプルを平等に扱う。
そこで本研究では,SNNにCurriculum Learning(CL)を導入したCL-SNNモデルを提案する。
clは、より難しいデータを導入する前にモデルに簡単なデータを提示し、人間の学習プロセスを模倣するトレーニング戦略である。
信頼性を意識した損失を使用して、異なる難易度でサンプルを測定し、処理します。
異なるサンプルの信頼性を学習することで、難しいサンプルのパラメータ最適化への寄与を自動で減少させる。
静的画像データセットMNIST, Fashion-MNIST, CIFAR10およびニューロモルフィックデータセットN-MNIST, CIFAR10-DVS, DVS-Gestureについて実験を行った。
結果は有望だ。
我々の知る限り、CLを導入することでSNNの生物学的妥当性を高めるための最初の提案である。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - Are Sparse Neural Networks Better Hard Sample Learners? [24.2141078613549]
ディープニューラルネットワークの最適性能において、ハードサンプルは重要な役割を果たす。
挑戦的なサンプルに基づいてトレーニングされたほとんどのSNNは、特定の間隔レベルで精度の高いモデルにマッチしたり、超えたりすることができる。
論文 参考訳(メタデータ) (2024-09-13T21:12:18Z) - Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックデバイスにニューラルネットワークを実装するための有望なソリューションである。
しかし、SNNニューロンの非分化性は、それらを訓練することを困難にしている。
本稿では、ランダムなプロジェクションに基づく勾配のないアプローチである拡張直接フィードバックアライメント(aDFA)を用いてSNNの訓練を行う。
論文 参考訳(メタデータ) (2024-09-12T06:22:44Z) - ESL-SNNs: An Evolutionary Structure Learning Strategy for Spiking Neural
Networks [20.33499499020257]
スパイキングニューラルネットワーク(SNN)は、推論プロセス中に消費電力とイベント駆動特性に顕著な優位性を示した。
スパースSNNトレーニングをスクラッチから実装するために,ESL-SNNと呼ばれるSNNのための効率的な進化的構造学習フレームワークを提案する。
本研究は,SNNをスクラッチから切り離し,生物学的に妥当な進化機構で訓練するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-06T14:06:11Z) - Constructing Deep Spiking Neural Networks from Artificial Neural
Networks with Knowledge Distillation [20.487853773309563]
スパイキングニューラルネットワーク(SNN)は、高い計算効率を持つ脳にインスパイアされたモデルとしてよく知られている。
知識蒸留(KD)を用いた深部SNNモデル構築手法を提案する。
論文 参考訳(メタデータ) (2023-04-12T05:57:21Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
論文 参考訳(メタデータ) (2022-04-12T21:26:49Z) - Rethinking Nearest Neighbors for Visual Classification [56.00783095670361]
k-NNは、トレーニングセット内のテストイメージとトップk隣人間の距離を集約する遅延学習手法である。
我々は,教師付き手法と自己監督型手法のいずれでも,事前学習した視覚表現を持つk-NNを2つのステップで採用する。
本研究は,幅広い分類タスクに関する広範な実験により,k-NN統合の汎用性と柔軟性を明らかにした。
論文 参考訳(メタデータ) (2021-12-15T20:15:01Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。