論文の概要: Toward Robust Spiking Neural Network Against Adversarial Perturbation
- arxiv url: http://arxiv.org/abs/2205.01625v1
- Date: Tue, 12 Apr 2022 21:26:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 06:13:25.162086
- Title: Toward Robust Spiking Neural Network Against Adversarial Perturbation
- Title(参考訳): 対向摂動に対するロバストなスパイキングニューラルネットワーク
- Authors: Ling Liang, Kaidi Xu, Xing Hu, Lei Deng, Yuan Xie
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
- 参考スコア(独自算出の注目度): 22.56553160359798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As spiking neural networks (SNNs) are deployed increasingly in real-world
efficiency critical applications, the security concerns in SNNs attract more
attention. Currently, researchers have already demonstrated an SNN can be
attacked with adversarial examples. How to build a robust SNN becomes an urgent
issue. Recently, many studies apply certified training in artificial neural
networks (ANNs), which can improve the robustness of an NN model promisely.
However, existing certifications cannot transfer to SNNs directly because of
the distinct neuron behavior and input formats for SNNs. In this work, we first
design S-IBP and S-CROWN that tackle the non-linear functions in SNNs' neuron
modeling. Then, we formalize the boundaries for both digital and spike inputs.
Finally, we demonstrate the efficiency of our proposed robust training method
in different datasets and model architectures. Based on our experiment, we can
achieve a maximum $37.7\%$ attack error reduction with $3.7\%$ original
accuracy loss. To the best of our knowledge, this is the first analysis on
robust training of SNNs.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)が現実の効率の重要なアプリケーションにますますデプロイされるにつれて、SNNのセキュリティ上の懸念がより注目を集めている。
現在、研究者らはSNNを敵の例で攻撃できることを示した。
堅牢なSNNの構築方法が緊急の問題になります。
近年,ニューラルネットワーク(ANN)における認証トレーニングの適用例が多く,NNモデルの堅牢性の向上が期待できる。
しかし、SNNのニューロンの挙動や入力形式が異なるため、既存の認証は直接SNNに転送することはできない。
本研究では、SNNのニューロンモデリングにおける非線形機能に対処するS-IBPとS-CROWNを最初に設計する。
そして,デジタル入力とスパイク入力の両方の境界を定式化する。
最後に、異なるデータセットとモデルアーキテクチャにおけるロバストなトレーニング手法の有効性を実証する。
実験によれば、攻撃誤差を最大で37.7\%減らし、元の精度を3.7\%減らすことができる。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
関連論文リスト
- Data Poisoning-based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks [3.9444202574850755]
スパイキングニューラルネットワーク(SNN)は、低エネルギー消費と高ロバスト性で知られている。
本稿では,バックドア攻撃時の教師付き学習規則により訓練されたSNNの堅牢性について検討する。
論文 参考訳(メタデータ) (2024-09-24T02:15:19Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性とニューロモルフィックチップの高エネルギー効率により、非常に重要視されている。
ほとんどの既存の方法は、ANNsとSNNsの違いを無視するSNNsに人工ニューラルネットワーク(ANNs)のプルーニングアプローチを直接適用する。
本稿では,ネットワーク構造を無訓練でシームレスに最適化可能な,snsの接続性と重み付けの合同学習アルゴリズムgradle rewiring (gradr)を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:05:53Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
スパイキングニューラルネット(SNN)は、その強い生物楽観性と高いエネルギー効率のために興味深い。
しかし、その性能は従来のディープニューラルネットワーク(DNN)よりもはるかに遅れている。
論文 参考訳(メタデータ) (2020-10-15T14:46:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks(SNN)は、機械学習ベースのアプリケーションにおいて注目を浴びている。
本稿では,対応するディープニューラルネットワーク(DNN)とほぼ同じ精度のSNNの設計手法を示す。
我々のSNNは89.64%の分類精度を達成し、37のLoihiコアしか占有していない。
論文 参考訳(メタデータ) (2020-05-16T17:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。