論文の概要: Timely Fusion of Surround Radar/Lidar for Object Detection in Autonomous
Driving Systems
- arxiv url: http://arxiv.org/abs/2309.04806v1
- Date: Sat, 9 Sep 2023 14:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 16:07:31.376272
- Title: Timely Fusion of Surround Radar/Lidar for Object Detection in Autonomous
Driving Systems
- Title(参考訳): 自律走行システムにおける物体検出のための周辺レーダ/ライダーの時間融合
- Authors: Wenjing Xie, Tao Hu, Neiwen Ling, Guoliang Xing, Shaoshan Liu, Nan
Guan
- Abstract要約: レーダーとライダーセンサーのデータは、その補完的な利点を十分に活用し、周囲をより正確に再現することができる。
既存のレーダ/リダ融合法は、サラウンドレーダの低周波で動作する必要がある。
本稿では,Radar/Lidar周辺を高速なLidarのみに制限された作業周波数でヒューズする手法を開発した。
- 参考スコア(独自算出の注目度): 9.859369318359564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fusing Radar and Lidar sensor data can fully utilize their complementary
advantages and provide more accurate reconstruction of the surrounding for
autonomous driving systems. Surround Radar/Lidar can provide 360-degree view
sampling with the minimal cost, which are promising sensing hardware solutions
for autonomous driving systems. However, due to the intrinsic physical
constraints, the rotating speed of surround Radar, and thus the frequency to
generate Radar data frames, is much lower than surround Lidar. Existing
Radar/Lidar fusion methods have to work at the low frequency of surround Radar,
which cannot meet the high responsiveness requirement of autonomous driving
systems.This paper develops techniques to fuse surround Radar/Lidar with
working frequency only limited by the faster surround Lidar instead of the
slower surround Radar, based on the state-of-the-art object detection model
MVDNet. The basic idea of our approach is simple: we let MVDNet work with
temporally unaligned data from Radar/Lidar, so that fusion can take place at
any time when a new Lidar data frame arrives, instead of waiting for the slow
Radar data frame. However, directly applying MVDNet to temporally unaligned
Radar/Lidar data greatly degrades its object detection accuracy. The key
information revealed in this paper is that we can achieve high output frequency
with little accuracy loss by enhancing the training procedure to explore the
temporal redundancy in MVDNet so that it can tolerate the temporal unalignment
of input data. We explore several different ways of training enhancement and
compare them quantitatively with experiments.
- Abstract(参考訳): fusing radarとlidarセンサーデータは、その補完的な利点を十分に活用でき、自律運転システムの周囲をより正確に再構築することができる。
Surround Radar/Lidarは、最小限のコストで360度ビューサンプリングを提供する。
しかし、本質的な物理的制約のため、Radarの周囲の回転速度、すなわちRadarデータフレームを生成する周波数は、Lidarの周囲よりもはるかに低い。
既存のRadar/Lidar融合法は、自律走行システムの高応答性要件を満たすことができないRadarの低周波で動作する必要があるが、本稿では、現状のオブジェクト検出モデルMVDNetに基づいて、Radar/Lidarを低周波ではなく、より高速なLidarのみに制限された作業周波数でヒューズする方法を開発した。
このアプローチの基本的な考え方は単純で、mvdnetにレーダー/ライダーからの時間的不整合データを処理させ、新しいlidarデータフレームが到着した時にいつでも、遅いレーダーデータフレームを待つことなく融合を行えるようにします。
しかし、時間的に不整合なRadar/Lidarデータに直接MVDNetを適用すると、オブジェクト検出精度は大きく低下する。
本稿では、MVDNetにおける時間的冗長性を探究し、入力データの時間的不整合を許容できるようにトレーニング手順を強化することにより、高い出力周波数を少ない精度で達成できることを示す。
トレーニング強化の様々な方法を探求し、それらを実験と定量的に比較する。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Bootstrapping Autonomous Driving Radars with Self-Supervised Learning [13.13679517730015]
レーダモデルの訓練は、大規模レーダデータの注釈付けのコストと難しさによって妨げられている。
本研究では,未ラベルのレーダデータを事前学習型レーダのみの埋め込みに活用して,自律型認識タスクを実現するための自己教師型学習フレームワークを提案する。
下流オブジェクト検出に使用する場合、提案するセルフスーパービジョンフレームワークが、最先端の教師付きベースラインの精度をmAPで5.8%向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-07T18:38:39Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
本稿では,レーダー物体検出のためのディープラーニングに基づくアルゴリズムを提案する。
我々は102544フレームの生レーダと同期LiDARデータを備えた新しいマルチモーダルデータセットを作成しました。
我々の最高性能レーダ検出モデルは、指向性IoU0.3で77.28%APを達成した。
論文 参考訳(メタデータ) (2020-04-11T05:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。