SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models
- URL: http://arxiv.org/abs/2309.05019v2
- Date: Mon, 4 Mar 2024 10:05:53 GMT
- Title: SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models
- Authors: Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun,
Zhenguo Li, Zhi-Ming Ma
- Abstract summary: Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks.
As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed.
We propose SA-of-r, which is an improved efficient Adams method for solving diffusion SDE to generate data with high quality.
- Score: 66.67616086310662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Probabilistic Models (DPMs) have achieved considerable success in
generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE
or ODE which is time-consuming, numerous fast sampling methods built upon
improved differential equation solvers are proposed. The majority of such
techniques consider solving the diffusion ODE due to its superior efficiency.
However, stochastic sampling could offer additional advantages in generating
diverse and high-quality data. In this work, we engage in a comprehensive
analysis of stochastic sampling from two aspects: variance-controlled diffusion
SDE and linear multi-step SDE solver. Based on our analysis, we propose
SA-Solver, which is an improved efficient stochastic Adams method for solving
diffusion SDE to generate data with high quality. Our experiments show that
SA-Solver achieves: 1) improved or comparable performance compared with the
existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID
scores on substantial benchmark datasets under a suitable number of function
evaluations (NFEs).
Related papers
- Repulsive Latent Score Distillation for Solving Inverse Problems [31.255943277671893]
Score Distillation Sampling (SDS) has been pivotal for leveraging pre-trained diffusion models in downstream tasks such as inverse problems.
We introduce a novel variational framework for posterior sampling to address mode collapse and latent space inversion.
We extend this framework with an augmented variational distribution that disentangles the latent and data.
arXiv Detail & Related papers (2024-06-24T14:43:02Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Elucidating the solution space of extended reverse-time SDE for
diffusion models [54.23536653351234]
Diffusion models (DMs) demonstrate potent image generation capabilities in various generative modeling tasks.
Their primary limitation lies in slow sampling speed, requiring hundreds or thousands of sequential function evaluations to generate high-quality images.
We formulate the sampling process as an extended reverse-time SDE, unifying prior explorations into ODEs and SDEs.
We devise fast and training-free samplers, ER-SDE-rs, achieving state-of-the-art performance across all samplers.
arXiv Detail & Related papers (2023-09-12T12:27:17Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
arXiv Detail & Related papers (2023-05-24T17:09:54Z) - SEEDS: Exponential SDE Solvers for Fast High-Quality Sampling from
Diffusion Models [0.49478969093606673]
A potent class of generative models known as Diffusion Probabilistic Models (DPMs) has become prominent.
Despite being quick, such solvers do not usually reach the optimal quality achieved by available slow SDE solvers.
Our goal is to propose SDE solvers that reach optimal quality without requiring several hundreds or thousands of NFEs to achieve that goal.
arXiv Detail & Related papers (2023-05-23T17:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.