Sparse learned kernels for interpretable and efficient medical time series processing
- URL: http://arxiv.org/abs/2307.05385v4
- Date: Sun, 06 Oct 2024 04:22:40 GMT
- Title: Sparse learned kernels for interpretable and efficient medical time series processing
- Authors: Sully F. Chen, Zhicheng Guo, Cheng Ding, Xiao Hu, Cynthia Rudin,
- Abstract summary: Deep learning methods were compute-intensive and lacked interpretability.
We propose Sparse Mixture of Learned Kernels (SMoLK), an interpretable architecture for medical time-series signals.
SMoLK learns a set of lightweight flexible kernels that form a single-layer sparse neural network.
- Score: 19.5212988158778
- License:
- Abstract: Rapid, reliable, and accurate interpretation of medical time-series signals is crucial for high-stakes clinical decision-making. Deep learning methods offered unprecedented performance in medical signal processing but at a cost: they were compute-intensive and lacked interpretability. We propose Sparse Mixture of Learned Kernels (SMoLK), an interpretable architecture for medical time series processing. SMoLK learns a set of lightweight flexible kernels that form a single-layer sparse neural network, providing not only interpretability, but also efficiency, robustness, and generalization to unseen data distributions. We introduce a parameter reduction techniques to reduce the size of SMoLK's networks while maintaining performance. We test SMoLK on two important tasks common to many consumer wearables: photoplethysmography (PPG) artifact detection and atrial fibrillation detection from single-lead electrocardiograms (ECGs). We find that SMoLK matches the performance of models orders of magnitude larger. It is particularly suited for real-time applications using low-power devices, and its interpretability benefits high-stakes situations.
Related papers
- An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - Time Scale Network: A Shallow Neural Network For Time Series Data [18.46091267922322]
Time series data is often composed of information at multiple time scales.
Deep learning strategies exist to capture this information, but many make networks larger, require more data, are more demanding to compute, and are difficult to interpret.
We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation.
arXiv Detail & Related papers (2023-11-10T16:39:55Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Sculpting Efficiency: Pruning Medical Imaging Models for On-Device
Inference [13.403419873964422]
We highlight the excess operational complexity in a suboptimally configured ML model from prior work.
Our results show a compression rate of 1148x with minimal loss in quality.
We consider avenues for future research in streamlining for clinical researchers to develop models quicker and better suited for real-world use.
arXiv Detail & Related papers (2023-09-10T17:34:14Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
Decision support systems relax the challenges inherent to the physical examination of images.
Most deep learning algorithms utilised approaches are not amenable to implementation on resource-constrained devices.
This paper presents the development and evaluation of the performance of lightweight deep learning technique for the detection of COVID-19 using the MobileNetV2 model.
arXiv Detail & Related papers (2023-05-30T13:14:03Z) - A Comparison of Temporal Encoders for Neuromorphic Keyword Spotting with
Few Neurons [0.11726720776908518]
Two candidate neurocomputational elements for temporal encoding and feature extraction in SNNs are investigated.
Resource-efficient keyword spotting applications may benefit from the use of these encoders, but further work on methods for learning the time constants and weights is required.
arXiv Detail & Related papers (2023-01-24T12:50:54Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.