論文の概要: Adaptive conformal classification with noisy labels
- arxiv url: http://arxiv.org/abs/2309.05092v1
- Date: Sun, 10 Sep 2023 17:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 14:37:00.594972
- Title: Adaptive conformal classification with noisy labels
- Title(参考訳): 雑音ラベルを用いた適応型等角分類
- Authors: Matteo Sesia, Y. X. Rachel Wang, Xin Tong
- Abstract要約: 本稿では,ランダムラベルの汚染に自動的に適応可能な分類タスクに対して,新しいコンフォメーション予測手法を提案する。
提案手法の利点は、広範囲なシミュレーションと、CIFAR-10H画像データセットを用いたオブジェクト分類への応用によって実証される。
- 参考スコア(独自算出の注目度): 22.33857704379073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper develops novel conformal prediction methods for classification
tasks that can automatically adapt to random label contamination in the
calibration sample, enabling more informative prediction sets with stronger
coverage guarantees compared to state-of-the-art approaches. This is made
possible by a precise theoretical characterization of the effective coverage
inflation (or deflation) suffered by standard conformal inferences in the
presence of label contamination, which is then made actionable through new
calibration algorithms. Our solution is flexible and can leverage different
modeling assumptions about the label contamination process, while requiring no
knowledge about the data distribution or the inner workings of the
machine-learning classifier. The advantages of the proposed methods are
demonstrated through extensive simulations and an application to object
classification with the CIFAR-10H image data set.
- Abstract(参考訳): 本稿では,キャリブレーションサンプルのランダムラベル汚染に自動的に適応可能な分類タスクに対する新しいコンフォメーション予測手法を開発し,最先端の手法と比較して,より強力なカバレッジ保証を備えた情報的予測セットを実現する。
これはラベル汚染の存在下で標準共形推論によって被る有効範囲インフレーション(またはデフレ)の正確な理論的特徴付けによって実現され、新しいキャリブレーションアルゴリズムによって実行可能である。
我々のソリューションは柔軟であり、ラベル汚染プロセスに関する様々なモデリング仮定を活用できるが、データ分布や機械学習分類器の内部動作に関する知識は不要である。
提案手法の利点は、広範囲なシミュレーションと、CIFAR-10H画像データセットを用いたオブジェクト分類への応用によって実証される。
関連論文リスト
- Adaptive Conformal Inference by Particle Filtering under Hidden Markov Models [8.505262415500168]
本稿では,この問題に対処するための粒子フィルタリング手法を活用する適応型共形推論フレームワークを提案する。
観測不能な隠れ状態に直接焦点をあてるのではなく、隠れ状態の実際の後部分布の近似として重み付き粒子を革新的に利用する。
論文 参考訳(メタデータ) (2024-11-03T13:15:32Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
本稿では,分類モデルに適したランクベーススコア関数を用いた新しいコンフォメーション予測手法を提案する。
提案手法は,そのサイズを管理しながら,所望のカバレッジ率を達成する予測セットを構築する。
コントリビューションには、新しい共形予測法、理論的解析、経験的評価が含まれる。
論文 参考訳(メタデータ) (2024-07-05T10:43:41Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
実験的に信頼性の高い近似条件付きカバレッジを得るためのデータ駆動手法を解析する。
我々は、限界範囲のカバレッジ保証を持つ分割型代替案で、実質的な(そして、そうでない)アンダーカバーの可能性を実証する。
論文 参考訳(メタデータ) (2022-05-28T02:59:05Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
2つの経路による分類問題に対する不確実性定量化(UQ)に焦点を当てる。
まず、ラベルシフトはカバレッジとキャリブレーションの低下を示すことでuqを損なうと論じる。
これらの手法を, 理論上, 分散性のない枠組みで検討し, その優れた実用性を示す。
論文 参考訳(メタデータ) (2021-03-04T20:51:03Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。