論文の概要: Deep Learning-Aided Subspace-Based DOA Recovery for Sparse Arrays
- arxiv url: http://arxiv.org/abs/2309.05109v1
- Date: Sun, 10 Sep 2023 18:32:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 14:27:13.880127
- Title: Deep Learning-Aided Subspace-Based DOA Recovery for Sparse Arrays
- Title(参考訳): 深層学習支援サブスペースに基づくスパースアレイのDOA復元
- Authors: Yoav Amiel, Dor H. Shmuel, Nir Shlezinger, and Wasim Huleihel
- Abstract要約: 本研究では,Sparse-SubspaceNetを提案する。
これにより、モデルベース部分空間DoA推定器の解釈可能性と適合性を保ちながら、コヒーレントソースやスパースアレイの誤校正に対処することを学ぶ。
- 参考スコア(独自算出の注目度): 25.776724012525662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse arrays enable resolving more direction of arrivals (DoAs) than antenna
elements using non-uniform arrays. This is typically achieved by reconstructing
the covariance of a virtual large uniform linear array (ULA), which is then
processed by subspace DoA estimators. However, these method assume that the
signals are non-coherent and the array is calibrated; the latter often
challenging to achieve in sparse arrays, where one cannot access the virtual
array elements. In this work, we propose Sparse-SubspaceNet, which leverages
deep learning to enable subspace-based DoA recovery from sparse miscallibrated
arrays with coherent sources. Sparse- SubspaceNet utilizes a dedicated deep
network to learn from data how to compute a surrogate virtual array covariance
that is divisible into distinguishable subspaces. By doing so, we learn to cope
with coherent sources and miscalibrated sparse arrays, while preserving the
interpretability and the suitability of model-based subspace DoA estimators.
- Abstract(参考訳): スパース配列は、非一様配列を用いたアンテナ要素よりも多くの到着方向(doas)を解決することができる。
これは典型的には、仮想大一様線形アレイ(ULA)の共分散を再構成し、サブスペースDoA推定器によって処理される。
しかし、これらの方法は信号が非一貫性で配列が校正されていると仮定し、後者は仮想配列要素にアクセスできないスパース配列で達成することがしばしば困難である。
本研究では,Sparse-SubspaceNetを提案する。このSparse-SubspaceNetは,Sparse-Subspace-based DoA recovery from sparse miscallibrated arrays with coherent sources。
Sparse-SubspaceNetは専用のディープネットワークを使用して、区別可能なサブスペースに分割可能な仮想配列共分散の計算方法を学ぶ。
これにより、モデルベース部分空間DoA推定器の解釈可能性と適合性を保ちながら、コヒーレントソースやスパースアレイの誤校正に対処することを学ぶ。
関連論文リスト
- Subspace Representation Learning for Sparse Linear Arrays to Localize More Sources than Sensors: A Deep Learning Methodology [19.100476521802243]
我々はスパース線形アレイ(SLA)のサンプル共分散からコアレイ部分空間を推定する新しい手法を開発した。
このような表現を学習するために、所望部分空間と推定部分空間との分離を測る損失関数を提案する。
異なる次元の学習部分空間の計算は、新しいバッチサンプリング戦略によって高速化される。
論文 参考訳(メタデータ) (2024-08-29T15:14:52Z) - Sparse Array Design for Direction Finding using Deep Learning [19.061021605579683]
疎配列を設計するための深層学習(DL)技術が導入されている。
この章では、DLベースのスパースアレイの応用について、いくつかの方向の合成を行っている。
論文 参考訳(メタデータ) (2023-08-08T22:45:48Z) - SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation [36.647703652676626]
SubspaceNetは、観測を区別可能な部分空間に分割する方法を学ぶデータ駆動型DoA推定器である。
SubspaceNetは、コヒーレントソース、広帯域信号、低いSNR、配列ミスマッチ、限られたスナップショットに対処する様々なDoA推定アルゴリズムを実現する。
論文 参考訳(メタデータ) (2023-06-04T06:30:13Z) - Learning Structure Aware Deep Spectral Embedding [11.509692423756448]
本稿では, スペクトル埋込み損失と構造保存損失を組み合わせ, 深層スペクトルの埋込みを考慮した新しい構造解析手法を提案する。
両タイプの情報を同時に符号化し,構造認識型スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,公開されている6つの実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-05-14T18:18:05Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - A Critique of Self-Expressive Deep Subspace Clustering [23.971512395191308]
サブスペースクラスタリング(Subspace clustering)は、線形サブスペースの和集合上でサポートされているデータをクラスタリングするために設計された、教師なしクラスタリング技術である。
従来の作業では適切に対処されていなかったこのアプローチには,潜在的な欠陥がいくつかあることを示す。
論文 参考訳(メタデータ) (2020-10-08T00:14:59Z) - Ellipsoidal Subspace Support Vector Data Description [98.67884574313292]
一クラス分類に最適化された低次元空間にデータを変換する新しい手法を提案する。
提案手法の線形および非線形の定式化について述べる。
提案手法は,最近提案されたサブスペースサポートベクトルデータ記述よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2020-03-20T21:31:03Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。