論文の概要: Learning Structure Aware Deep Spectral Embedding
- arxiv url: http://arxiv.org/abs/2305.08215v1
- Date: Sun, 14 May 2023 18:18:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 16:58:45.481970
- Title: Learning Structure Aware Deep Spectral Embedding
- Title(参考訳): 深層スペクトル埋め込みを意識した学習構造
- Authors: Hira Yaseen and Arif Mahmood
- Abstract要約: 本稿では, スペクトル埋込み損失と構造保存損失を組み合わせ, 深層スペクトルの埋込みを考慮した新しい構造解析手法を提案する。
両タイプの情報を同時に符号化し,構造認識型スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,公開されている6つの実世界のデータセットを用いて評価する。
- 参考スコア(独自算出の注目度): 11.509692423756448
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spectral Embedding (SE) has often been used to map data points from
non-linear manifolds to linear subspaces for the purpose of classification and
clustering. Despite significant advantages, the subspace structure of data in
the original space is not preserved in the embedding space. To address this
issue subspace clustering has been proposed by replacing the SE graph affinity
with a self-expression matrix. It works well if the data lies in a union of
linear subspaces however, the performance may degrade in real-world
applications where data often spans non-linear manifolds. To address this
problem we propose a novel structure-aware deep spectral embedding by combining
a spectral embedding loss and a structure preservation loss. To this end, a
deep neural network architecture is proposed that simultaneously encodes both
types of information and aims to generate structure-aware spectral embedding.
The subspace structure of the input data is encoded by using attention-based
self-expression learning. The proposed algorithm is evaluated on six publicly
available real-world datasets. The results demonstrate the excellent clustering
performance of the proposed algorithm compared to the existing state-of-the-art
methods. The proposed algorithm has also exhibited better generalization to
unseen data points and it is scalable to larger datasets without requiring
significant computational resources.
- Abstract(参考訳): スペクトル埋め込み(se)は、分類とクラスタリングのために、非線形多様体から線形部分空間へのデータポイントのマッピングにしばしば用いられる。
重要な利点にもかかわらず、元の空間におけるデータの部分空間構造は埋め込み空間では保存されない。
この問題に対処するために、SEグラフ親和性を自己表現行列に置き換えることで、サブスペースクラスタリングが提案されている。
しかし、データが線型部分空間の結合にある場合、データが非線型多様体にまたがる実世界での性能は低下する可能性がある。
この問題に対処するために,スペクトル埋め込み損失と構造保存損失を組み合わせた新しい構造認識深層スペクトル埋め込みを提案する。
この目的のために、両タイプの情報を同時に符号化し、構造対応スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
注意に基づく自己表現学習を用いて入力データの部分空間構造を符号化する。
提案アルゴリズムは6つの実世界のデータセット上で評価される。
その結果,既存の最先端手法と比較して,提案アルゴリズムのクラスタリング性能は優れていた。
提案アルゴリズムは,データポイントの発見に優れた一般化を示し,膨大な計算資源を必要としない大規模データセットにスケーラブルである。
関連論文リスト
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
本研究では,高次元データの回帰解析に挑戦する拡散スペクトルアルゴリズムを提案する。
本手法では,熱カーネルの局所的推定特性を用いて,この障害を克服するための適応型データ駆動型アプローチを提案する。
我々のアルゴリズムは完全にデータ駆動方式で動作し、データ固有の多様体構造内で直接動作する。
論文 参考訳(メタデータ) (2024-10-18T15:29:04Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Adaptive Attribute and Structure Subspace Clustering Network [49.040136530379094]
自己表現型サブスペースクラスタリングネットワークを提案する。
まず、入力データサンプルを表現する自動エンコーダについて検討する。
そこで我々は, 局所的な幾何学的構造を捉えるために, 混合符号と対称構造行列を構築した。
構築された属性構造と行列に対して自己表現を行い、親和性グラフを学習する。
論文 参考訳(メタデータ) (2021-09-28T14:00:57Z) - Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering [2.578242050187029]
低ランク表現(LRR)は、サブスペースクラスタリングにおけるデータポイントの局所性情報を破棄する。
本稿では,隣接ノードの変動数を容易にし,データの局所性情報を組み込むハイパーグラフモデルを提案する。
人工および実データを用いた実験により,提案手法の精度と精度が向上した。
論文 参考訳(メタデータ) (2021-03-06T08:22:24Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - A Critique of Self-Expressive Deep Subspace Clustering [23.971512395191308]
サブスペースクラスタリング(Subspace clustering)は、線形サブスペースの和集合上でサポートされているデータをクラスタリングするために設計された、教師なしクラスタリング技術である。
従来の作業では適切に対処されていなかったこのアプローチには,潜在的な欠陥がいくつかあることを示す。
論文 参考訳(メタデータ) (2020-10-08T00:14:59Z) - Learning a Deep Part-based Representation by Preserving Data
Distribution [21.13421736154956]
教師なし次元減少は、高次元データ認識問題において一般的に用いられる技法の1つである。
本稿では,データ分布を保存することにより,深部部分に基づく表現を学習し,新しいアルゴリズムを分散保存ネットワーク埋め込みと呼ぶ。
実世界のデータセットにおける実験結果から,提案アルゴリズムはクラスタ精度とAMIの点で優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-17T12:49:36Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Robust Self-Supervised Convolutional Neural Network for Subspace
Clustering and Classification [0.10152838128195464]
本稿では,自己管理型畳み込みサブスペースクラスタリングネットワーク(S2$ConvSCN)のロバストな定式化を提案する。
真の教師なしのトレーニング環境では、Robust $S2$ConvSCNは、4つのよく知られたデータセットで見られるデータと見えないデータの両方に対して、ベースラインバージョンをかなり上回っている。
論文 参考訳(メタデータ) (2020-04-03T16:07:58Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。