FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal
Consistent Transformer for 3D Object Detection
- URL: http://arxiv.org/abs/2309.05257v3
- Date: Mon, 9 Oct 2023 02:09:11 GMT
- Title: FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal
Consistent Transformer for 3D Object Detection
- Authors: Chunyong Hu, Hang Zheng, Kun Li, Jianyun Xu, Weibo Mao, Maochun Luo,
Lingxuan Wang, Mingxia Chen, Qihao Peng, Kaixuan Liu, Yiru Zhao, Peihan Hao,
Minzhe Liu, Kaicheng Yu
- Abstract summary: We propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer.
By developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously.
Our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.
- Score: 14.457844173630667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-sensor modal fusion has demonstrated strong advantages in 3D object
detection tasks. However, existing methods that fuse multi-modal features
require transforming features into the bird's eye view space and may lose
certain information on Z-axis, thus leading to inferior performance. To this
end, we propose a novel end-to-end multi-modal fusion transformer-based
framework, dubbed FusionFormer, that incorporates deformable attention and
residual structures within the fusion encoding module. Specifically, by
developing a uniform sampling strategy, our method can easily sample from 2D
image and 3D voxel features spontaneously, thus exploiting flexible
adaptability and avoiding explicit transformation to the bird's eye view space
during the feature concatenation process. We further implement a residual
structure in our feature encoder to ensure the model's robustness in case of
missing an input modality. Through extensive experiments on a popular
autonomous driving benchmark dataset, nuScenes, our method achieves
state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D
object detection task without test time augmentation.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.
Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - FusionViT: Hierarchical 3D Object Detection via LiDAR-Camera Vision
Transformer Fusion [8.168523242105763]
We will introduce a novel vision transformer-based 3D object detection model, namely FusionViT.
Our FusionViT model can achieve state-of-the-art performance and outperforms existing baseline methods.
arXiv Detail & Related papers (2023-11-07T00:12:01Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - Unifying Voxel-based Representation with Transformer for 3D Object
Detection [143.91910747605107]
We present a unified framework for multi-modality 3D object detection, named UVTR.
The proposed method aims to unify multi-modality representations in the voxel space for accurate and robust single- or cross-modality 3D detection.
UVTR achieves leading performance in the nuScenes test set with 69.7%, 55.1%, and 71.1% NDS for LiDAR, camera, and multi-modality inputs, respectively.
arXiv Detail & Related papers (2022-06-01T17:02:40Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.