Efficient Multimodal 3D Object Detector via Instance-Level Contrastive Distillation
- URL: http://arxiv.org/abs/2503.12914v1
- Date: Mon, 17 Mar 2025 08:26:11 GMT
- Title: Efficient Multimodal 3D Object Detector via Instance-Level Contrastive Distillation
- Authors: Zhuoqun Su, Huimin Lu, Shuaifeng Jiao, Junhao Xiao, Yaonan Wang, Xieyuanli Chen,
- Abstract summary: We introduce a fast yet effective multimodal 3D object detector, incorporating our proposed Instance-level Contrastive Distillation (ICD) framework and Cross Linear Attention Fusion Module (CLFM)<n>Our 3D object detector outperforms state-of-the-art (SOTA) methods while achieving superior efficiency.
- Score: 17.634678949648208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal 3D object detectors leverage the strengths of both geometry-aware LiDAR point clouds and semantically rich RGB images to enhance detection performance. However, the inherent heterogeneity between these modalities, including unbalanced convergence and modal misalignment, poses significant challenges. Meanwhile, the large size of the detection-oriented feature also constrains existing fusion strategies to capture long-range dependencies for the 3D detection tasks. In this work, we introduce a fast yet effective multimodal 3D object detector, incorporating our proposed Instance-level Contrastive Distillation (ICD) framework and Cross Linear Attention Fusion Module (CLFM). ICD aligns instance-level image features with LiDAR representations through object-aware contrastive distillation, ensuring fine-grained cross-modal consistency. Meanwhile, CLFM presents an efficient and scalable fusion strategy that enhances cross-modal global interactions within sizable multimodal BEV features. Extensive experiments on the KITTI and nuScenes 3D object detection benchmarks demonstrate the effectiveness of our methods. Notably, our 3D object detector outperforms state-of-the-art (SOTA) methods while achieving superior efficiency. The implementation of our method has been released as open-source at: https://github.com/nubot-nudt/ICD-Fusion.
Related papers
- Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection [53.2590751089607]
Real-IAD D3 is a high-precision multimodal dataset that incorporates an additional pseudo3D modality generated through photometric stereo.
We introduce an effective approach that integrates RGB, point cloud, and pseudo-3D depth information to leverage the complementary strengths of each modality.
Our experiments highlight the importance of these modalities in boosting detection robustness and overall IAD performance.
arXiv Detail & Related papers (2025-04-19T08:05:47Z) - SSLFusion: Scale & Space Aligned Latent Fusion Model for Multimodal 3D Object Detection [24.367371441506116]
Multimodal 3D object detection based on deep neural networks has indeed made significant progress.
However, it still faces challenges due to the misalignment of scale and spatial information between features extracted from 2D images and those derived from 3D point clouds.
We present SSLFusion, a novel scale & Space Aligned Latent Fusion Model, consisting of a scale-aligned fusion strategy, a 3D-to-2D space alignment module, and a latent cross-modal fusion module.
arXiv Detail & Related papers (2025-04-07T15:15:06Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.
Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - SimDistill: Simulated Multi-modal Distillation for BEV 3D Object
Detection [56.24700754048067]
Multi-view camera-based 3D object detection has become popular due to its low cost, but accurately inferring 3D geometry solely from camera data remains challenging.
We propose a Simulated multi-modal Distillation (SimDistill) method by carefully crafting the model architecture and distillation strategy.
Our SimDistill can learn better feature representations for 3D object detection while maintaining a cost-effective camera-only deployment.
arXiv Detail & Related papers (2023-03-29T16:08:59Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.