Partial Loopholes Free Device Independent Quantum Random Number
Generator Using IBM's Quantum Computers
- URL: http://arxiv.org/abs/2309.05299v2
- Date: Tue, 26 Sep 2023 03:45:53 GMT
- Title: Partial Loopholes Free Device Independent Quantum Random Number
Generator Using IBM's Quantum Computers
- Authors: Abhishek Yadav, Sandeep Mishra, Anirban Pathak
- Abstract summary: In this work, the violation of CHSH inequality has been used to propose a scheme by which one can generate device independent quantum random numbers.
The performance of each quantum computer against the CHSH test has been plotted and characterized.
This study will provide new directions for the development of self-testing and semi-self-testing random number generators using quantum computers.
- Score: 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random numbers form an intrinsic part of modern day computing with
applications in a wide variety of fields. But due to their limitations, the use
of pseudo random number generators (PRNGs) is certainly not desirable for
sensitive applications. Quantum systems due to their intrinsic randomness form
a suitable candidate for generation of true random numbers that can also be
certified. In this work, the violation of CHSH inequality has been used to
propose a scheme by which one can generate device independent quantum random
numbers by use of IBM quantum computers that are available on the cloud. The
generated random numbers have been tested for their source of origin through
experiments based on the testing of CHSH inequality through available IBM
quantum computers. The performance of each quantum computer against the CHSH
test has been plotted and characterized. Further, efforts have been made to
close as many loopholes as possible to produce device independent quantum
random number generators. This study will provide new directions for the
development of self-testing and semi-self-testing random number generators
using quantum computers.
Related papers
- Investigating a Device Independence Quantum Random Number Generation [4.902256682663188]
We certify randomness with the aid of quantum entanglement in a device independent setting.
The CHSH inequality violation and quantum state tomography are used as independent checks on the measurement devices.
arXiv Detail & Related papers (2024-06-03T09:23:24Z) - Generation of True Quantum Random Numbers with On-Demand Probability
Distributions via Single-Photon Quantum Walks [5.201119608184586]
We show that single-photon quantum walks can generate multi-bit random numbers with on-demand probability distributions.
Our theoretical and experimental results exhibit high fidelity for various selected distributions.
arXiv Detail & Related papers (2024-03-05T03:05:19Z) - Quantum Random Number Generation with Partial Source Assumptions [26.983886835892363]
Quantum random number generator harnesses the power of quantum mechanics to generate true random numbers.
However, real-world devices often suffer from imperfections that can undermine the integrity and privacy of generated randomness.
We present a novel quantum random number generator and experimentally demonstrate it.
arXiv Detail & Related papers (2023-12-06T08:08:11Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Self-testing randomness from a nuclear spin system [0.9774183498779745]
We present a proof-of-concept random number generator based on a nuclear spin system for the first time.
The entropy of randomness in the experimental data is quantified by two dimension witness certification protocols.
arXiv Detail & Related papers (2022-03-09T08:43:45Z) - On the effects of biased quantum random numbers on the initialization of
artificial neural networks [3.0736361776703562]
A common property of quantum computers is that they can exhibit instances of true randomness as opposed to pseudo-randomness.
Recent results suggest that benefits can indeed be achieved from the use of quantum random numbers.
arXiv Detail & Related papers (2021-08-30T15:50:07Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.