Quantum Random Number Generation with Partial Source Assumptions
- URL: http://arxiv.org/abs/2312.03333v1
- Date: Wed, 6 Dec 2023 08:08:11 GMT
- Title: Quantum Random Number Generation with Partial Source Assumptions
- Authors: Xing Lin, Rong Wang
- Abstract summary: Quantum random number generator harnesses the power of quantum mechanics to generate true random numbers.
However, real-world devices often suffer from imperfections that can undermine the integrity and privacy of generated randomness.
We present a novel quantum random number generator and experimentally demonstrate it.
- Score: 26.983886835892363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum random number generator harnesses the power of quantum mechanics to
generate true random numbers, making it valuable for various scientific
applications. However, real-world devices often suffer from imperfections that
can undermine the integrity and privacy of generated randomness. To combat this
issue, we present a novel quantum random number generator and experimentally
demonstrate it. Our approach circumvents the need for exhaustive
characterization of measurement devices, even in the presence of a quantum side
channel. Additionally, we also do not require detailed characterization of the
source, relying instead on reasonable assumptions about encoding dimension and
noise constraints. Leveraging commercially available all-fiber devices, we
achieve a randomness generation rate of 40 kbps.
Related papers
- How much secure randomness is in a quantum state? [0.0]
How much cryptographically-secure randomness can be extracted from a quantum state?
We consider a general adversarial model that allows for an adversary who has quantum side-information about both the source and the measurement device.
arXiv Detail & Related papers (2024-10-21T19:16:56Z) - Maximal device-independent randomness in every dimension [1.1650821883155187]
Device-independent quantum random number generation is a framework that makes use of the intrinsic randomness of quantum processes.
In this paper we demonstrate that this bound can be achieved for all dimensions $d$ by providing a family of explicit protocols.
arXiv Detail & Related papers (2024-09-27T17:03:11Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Investigating a Device Independence Quantum Random Number Generation [4.902256682663188]
We certify randomness with the aid of quantum entanglement in a device independent setting.
The CHSH inequality violation and quantum state tomography are used as independent checks on the measurement devices.
arXiv Detail & Related papers (2024-06-03T09:23:24Z) - Partial Loopholes Free Device Independent Quantum Random Number
Generator Using IBM's Quantum Computers [0.24578723416255752]
In this work, the violation of CHSH inequality has been used to propose a scheme by which one can generate device independent quantum random numbers.
The performance of each quantum computer against the CHSH test has been plotted and characterized.
This study will provide new directions for the development of self-testing and semi-self-testing random number generators using quantum computers.
arXiv Detail & Related papers (2023-09-11T08:34:45Z) - A privacy-preserving publicly verifiable quantum random number generator [48.7576911714538]
We report the implementation of an entanglement-based protocol that allows a third party to publicly perform statistical tests without compromising the privacy of the random bits.
limitations on computing power can restrict an end-user's ability to perform such verification.
arXiv Detail & Related papers (2023-05-18T12:13:48Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Self-testing randomness from a nuclear spin system [0.9774183498779745]
We present a proof-of-concept random number generator based on a nuclear spin system for the first time.
The entropy of randomness in the experimental data is quantified by two dimension witness certification protocols.
arXiv Detail & Related papers (2022-03-09T08:43:45Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.