ESG Sentiment Analysis: comparing human and language model performance
including GPT
- URL: http://arxiv.org/abs/2402.16650v1
- Date: Mon, 26 Feb 2024 15:22:30 GMT
- Title: ESG Sentiment Analysis: comparing human and language model performance
including GPT
- Authors: Karim Derrick
- Abstract summary: ESG has grown in importance in recent years with a surge in interest from the financial sector.
The use of sentiment analysis to measure ESG related reputation has developed and with it interest in the use of machines to do so.
Our study seeks to compare human performance with the cutting edge in machine performance in the measurement of ESG related sentiment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we explore the challenges of measuring sentiment in relation to
Environmental, Social and Governance (ESG) social media. ESG has grown in
importance in recent years with a surge in interest from the financial sector
and the performance of many businesses has become based in part on their ESG
related reputations. The use of sentiment analysis to measure ESG related
reputation has developed and with it interest in the use of machines to do so.
The era of digital media has created an explosion of new media sources, driven
by the growth of social media platforms. This growing data environment has
become an excellent source for behavioural insight studies across many
disciplines that includes politics, healthcare and market research. Our study
seeks to compare human performance with the cutting edge in machine performance
in the measurement of ESG related sentiment. To this end researchers classify
the sentiment of 150 tweets and a reliability measure is made. A gold standard
data set is then established based on the consensus of 3 researchers and this
data set is then used to measure the performance of different machine
approaches: one based on the VADER dictionary approach to sentiment
classification and then multiple language model approaches, including Llama2,
T5, Mistral, Mixtral, FINBERT, GPT3.5 and GPT4.
Related papers
- Leveraging Natural Language and Item Response Theory Models for ESG Scoring [0.0]
The study utilizes a comprehensive dataset of news articles in Portuguese related to Petrobras, a major oil company in Brazil.
The data is filtered and classified for ESG-related sentiments using advanced NLP methods.
The Rasch model is then applied to evaluate the psychometric properties of these ESG measures.
arXiv Detail & Related papers (2024-07-29T19:02:51Z) - ESG-FTSE: A corpus of news articles with ESG relevance labels and use cases [1.3937696730884712]
We present ESG-FTSE, the first corpus comprised of news articles with Environmental, Social and Governance (ESG) relevance annotations.
This has led to the rise of ESG scores to evaluate an investment's credentials as socially responsible.
Quantitative techniques can be applied to improve ESG scores, thus, responsible investing.
arXiv Detail & Related papers (2024-05-30T16:19:02Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
Large language models (LLMs) have advanced the development of various AI conversational agents.
SocialBench is the first benchmark designed to evaluate the sociality of role-playing conversational agents at both individual and group levels.
We find that agents excelling in individual level does not imply their proficiency in group level.
arXiv Detail & Related papers (2024-03-20T15:38:36Z) - GPT-4V(ision) as A Social Media Analysis Engine [77.23394183063238]
This paper explores GPT-4V's capabilities for social multimedia analysis.
We select five representative tasks, including sentiment analysis, hate speech detection, fake news identification, demographic inference, and political ideology detection.
GPT-4V demonstrates remarkable efficacy in these tasks, showcasing strengths such as joint understanding of image-text pairs, contextual and cultural awareness, and extensive commonsense knowledge.
arXiv Detail & Related papers (2023-11-13T18:36:50Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - Creating a Systematic ESG (Environmental Social Governance) Scoring
System Using Social Network Analysis and Machine Learning for More
Sustainable Company Practices [0.0]
This project aims to create a data-driven ESG evaluation system that can provide better guidance and more systemized scores by incorporating social sentiment.
Python web scrapers were developed to collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500 companies.
Machine-learning algorithms were trained and calibrated to S&P Global ESG Ratings to test their predictive capabilities.
arXiv Detail & Related papers (2023-09-07T20:03:45Z) - Incorporating Emotions into Health Mention Classification Task on Social
Media [70.23889100356091]
We present a framework for health mention classification that incorporates affective features.
We evaluate our approach on 5 HMC-related datasets from different social media platforms.
Our results indicate that HMC models infused with emotional knowledge are an effective alternative.
arXiv Detail & Related papers (2022-12-09T18:38:41Z) - Predicting Companies' ESG Ratings from News Articles Using Multivariate
Timeseries Analysis [17.332692582748408]
We build a model to predict ESG ratings from news articles using the combination of multivariate timeseries construction and deep learning techniques.
A news dataset for about 3,000 US companies together with their ratings is also created and released for training.
Our approach provides accurate results outperforming the state-of-the-art, and can be used in practice to support a manual determination or analysis of ESG ratings.
arXiv Detail & Related papers (2022-11-13T11:23:02Z) - BERTScore is Unfair: On Social Bias in Language Model-Based Metrics for
Text Generation [89.41378346080603]
This work presents the first systematic study on the social bias in PLM-based metrics.
We demonstrate that popular PLM-based metrics exhibit significantly higher social bias than traditional metrics on 6 sensitive attributes.
In addition, we develop debiasing adapters that are injected into PLM layers, mitigating bias in PLM-based metrics while retaining high performance for evaluating text generation.
arXiv Detail & Related papers (2022-10-14T08:24:11Z) - SustainBench: Benchmarks for Monitoring the Sustainable Development
Goals with Machine Learning [63.192289553021816]
Progress toward the United Nations Sustainable Development Goals has been hindered by a lack of data on key environmental and socioeconomic indicators.
Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media.
In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs.
arXiv Detail & Related papers (2021-11-08T18:59:04Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.