CitDet: A Benchmark Dataset for Citrus Fruit Detection
- URL: http://arxiv.org/abs/2309.05645v3
- Date: Thu, 10 Oct 2024 00:35:59 GMT
- Title: CitDet: A Benchmark Dataset for Citrus Fruit Detection
- Authors: Jordan A. James, Heather K. Manching, Matthew R. Mattia, Kim D. Bowman, Amanda M. Hulse-Kemp, William J. Beksi,
- Abstract summary: We present a new dataset to advance the state of the art in detecting citrus fruit and accurately estimate yield on trees affected by the Huanglongbing disease.
The dataset consists of over 32,000 bounding box annotations for fruit instances contained in 579 high-resolution images.
- Score: 4.148753005188076
- License:
- Abstract: In this letter, we present a new dataset to advance the state of the art in detecting citrus fruit and accurately estimate yield on trees affected by the Huanglongbing (HLB) disease in orchard environments via imaging. Despite the fact that significant progress has been made in solving the fruit detection problem, the lack of publicly available datasets has complicated direct comparison of results. For instance, citrus detection has long been of interest to the agricultural research community, yet there is an absence of work, particularly involving public datasets of citrus affected by HLB. To address this issue, we enhance state-of-the-art object detection methods for use in typical orchard settings. Concretely, we provide high-resolution images of citrus trees located in an area known to be highly affected by HLB, along with high-quality bounding box annotations of citrus fruit. Fruit on both the trees and the ground are labeled to allow for identification of fruit location, which contributes to advancements in yield estimation and potential measure of HLB impact via fruit drop. The dataset consists of over 32,000 bounding box annotations for fruit instances contained in 579 high-resolution images. In summary, our contributions are the following: (i) we introduce a novel dataset along with baseline performance benchmarks on multiple contemporary object detection algorithms, (ii) we show the ability to accurately capture fruit location on tree or on ground, and finally (ii) we present a correlation of our results with yield estimations.
Related papers
- Few-Shot Fruit Segmentation via Transfer Learning [4.616529139444651]
We develop a few-shot semantic segmentation framework for infield fruits using transfer learning.
Motivated by similar success in urban scene parsing, we propose specialized pre-training.
We show that models with pre-training learn to distinguish between fruit still on the trees and fruit that have fallen on the ground.
arXiv Detail & Related papers (2024-05-04T04:05:59Z) - A pipeline for multiple orange detection and tracking with 3-D fruit
relocalization and neural-net based yield regression in commercial citrus
orchards [0.0]
We propose a non-invasive alternative that utilizes fruit counting from videos, implemented as a pipeline.
To handle occluded and re-appeared fruit, we introduce a relocalization component that employs 3-D estimation of fruit locations.
By ensuring that at least 30% of the fruit is accurately detected, tracked, and counted, our yield regressor achieves an impressive coefficient of determination of 0.85.
arXiv Detail & Related papers (2023-12-27T21:22:43Z) - S$^3$AD: Semi-supervised Small Apple Detection in Orchard Environments [3.1979650133817206]
Crop detection is integral for precision agriculture applications such as automated yield estimation or fruit picking.
In this work, we address the challenges by reformulating the apple detection task in a semi-supervised manner.
We provide a large, high-resolution dataset MAD comprising 105 labeled images with 14,667 annotated apple instances and 4,440 unlabeled images.
We also propose a novel Semi-Supervised Small Apple Detection system S$3$AD based on contextual attention and selective tiling to improve the challenging detection of small apples.
arXiv Detail & Related papers (2023-11-08T21:25:27Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Yield Evaluation of Citrus Fruits based on the YoloV5 compressed by
Knowledge Distillation [5.585209836203215]
In the field of planting fruit trees, pre-harvest estimation of fruit yield is important for fruit storage and price evaluation.
In this paper, a fruit counting and yield assessment method based on computer vision is proposed for citrus fruit trees.
Experiments show that the proposed method can accurately count fruits and approximate the yield.
arXiv Detail & Related papers (2022-11-16T08:09:38Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z) - UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture [0.8399688944263843]
This paper presents a novel satellite imagery refinement framework based on a deep learning technique.
It exploits information properly derived from high resolution images acquired by unmanned aerial vehicle (UAV) airborne multispectral sensors.
A vineyard in Serralunga d'Alba (Northern Italy) was chosen as a case study for validation purposes.
arXiv Detail & Related papers (2020-04-29T18:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.