論文の概要: Adaptive Machine Learning for Resource-Constrained Environments
- arxiv url: http://arxiv.org/abs/2503.18634v1
- Date: Mon, 24 Mar 2025 12:52:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:41.830536
- Title: Adaptive Machine Learning for Resource-Constrained Environments
- Title(参考訳): 資源制約環境に対する適応型機械学習
- Authors: Sebastián A. Cajas Ordóñez, Jaydeep Samanta, Andrés L. Suárez-Cetrulo, Ricardo Simón Carbajo,
- Abstract要約: この研究は、時間とともに動的に利用できることによる、小さなゲートウェイでのオフロードの課題に取り組みます。
ゲートウェイの可用性を予測するために,オンラインおよび継続的機械学習技術を用いたCPU利用メトリクスを活用するアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.2487037582320804
- License:
- Abstract: The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
- Abstract(参考訳): Internet of Things(モノのインターネット)は、接続デバイスの普及と時間とともに連続的なデータストリームの形成を反映して、データが継続的に増加する量のデータを生成するサンプルドメインである。
したがって、アドホックで費用効率のよい機械学習ソリューションの需要は、この進化するデータ流入に適応する必要がある。
この研究は、時間とともに動的に利用できることによる、小さなゲートウェイでのオフロードの課題に取り組みます。
ゲートウェイの可用性を予測するために,オンラインおよび継続的機械学習技術を用いたCPU利用メトリクスを活用するアプローチを提案する。
これらの手法は、一般的な機械学習アルゴリズムと最近の時系列基盤モデルであるLag-Llamaと比較して、微調整とゼロショットのセットアップを行う。
パフォーマンスは、IoTゲートウェイからの時間的CPU使用率測定のデータセットに基づいてベンチマークされ、予測エラーやトレーニング、推論時間、メモリ消費といったモデルメトリクスに重点を置いている。
私たちの主な目的は、IoT環境でCPUパフォーマンスを予測するための、新しい効率的な方法を研究することです。
様々なシナリオにおいて,アンサンブルとオンライン手法が,資源のフットプリントを低く保ちながら,このタスクに有望な結果をもたらすことが示唆された。
関連論文リスト
- EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices [0.0]
エッジデバイス上の機械学習は、リソース制約のある環境でリアルタイムAIアプリケーションを可能にする。
計算資源を管理する既存のソリューションは、しばしば正確さやエネルギー効率に焦点を絞っている。
エッジデバイス上でのCPU利用とリソース管理を最適化する自己適応型アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-10T14:11:29Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
本研究では,長期エネルギー制約下でのデータ到着や資源の可利用性に固有のランダム性に対処する動的スケジューリングと資源割当アルゴリズムを開発した。
提案アルゴリズムは, デバイススケジューリング, 計算容量調整, 帯域幅の割り当ておよび各ラウンドの送信電力を適応的に決定する。
本手法の有効性をシミュレーションにより検証し,ベースライン方式と比較して学習性能とエネルギー効率が向上したことを示す。
論文 参考訳(メタデータ) (2024-05-20T14:13:22Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
機械学習(ML)は、巨大なIoT(Internet of Things)ベースのインテリジェントでユビキタスなコンピューティングのビッグデータ駆動モデリングと分析のための重要なテクニックである。
急成長するアプリケーションやデータ量にとって、分散学習は有望な新興パラダイムである。
本稿では,多くのユーザデバイスに分散した分散システム上でMLモデルをトレーニングする問題について検討する。
論文 参考訳(メタデータ) (2022-02-07T15:04:15Z) - Balancing Performance and Energy Consumption of Bagging Ensembles for
the Classification of Data Streams in Edge Computing [9.801387036837871]
エッジコンピューティング(EC)は、IoT(Internet of Things)や5Gネットワークといったテクノロジを開発する上で可能な要素として登場した。
本研究は,データストリームの分類において,バッグアンサンブルの性能とエネルギー消費を最適化するための戦略を検討する。
論文 参考訳(メタデータ) (2022-01-17T04:12:18Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。