論文の概要: Evaluating the Reliability of CNN Models on Classifying Traffic and Road
Signs using LIME
- arxiv url: http://arxiv.org/abs/2309.05747v1
- Date: Mon, 11 Sep 2023 18:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 15:30:04.860966
- Title: Evaluating the Reliability of CNN Models on Classifying Traffic and Road
Signs using LIME
- Title(参考訳): LIMEを用いた交通・道路標識分類におけるCNNモデルの信頼性評価
- Authors: Md. Atiqur Rahman, Ahmed Saad Tanim, Sanjid Islam, Fahim Pranto, G.M.
Shahariar and Md. Tanvir Rouf Shawon
- Abstract要約: 本研究は,これらのモデルの予測精度と,画像分類に適切な特徴を利用する能力を評価することに焦点を当てた。
モデル予測の強みと限界に関する洞察を得るために、この研究は局所的解釈可能なモデルに依存しない説明(LIME)フレームワークを用いている。
- 参考スコア(独自算出の注目度): 1.188383832081829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this investigation is to evaluate and contrast the
effectiveness of four state-of-the-art pre-trained models, ResNet-34, VGG-19,
DenseNet-121, and Inception V3, in classifying traffic and road signs with the
utilization of the GTSRB public dataset. The study focuses on evaluating the
accuracy of these models' predictions as well as their ability to employ
appropriate features for image categorization. To gain insights into the
strengths and limitations of the model's predictions, the study employs the
local interpretable model-agnostic explanations (LIME) framework. The findings
of this experiment indicate that LIME is a crucial tool for improving the
interpretability and dependability of machine learning models for image
identification, regardless of the models achieving an f1 score of 0.99 on
classifying traffic and road signs. The conclusion of this study has important
ramifications for how these models are used in practice, as it is crucial to
ensure that model predictions are founded on the pertinent image features.
- Abstract(参考訳): 本研究の目的は,GTSRB公開データセットを用いた交通・道路標識の分類において,最先端の事前訓練モデルであるResNet-34,VGG-19,DenseNet-121,Inception V3の有効性を評価し,比較することである。
本研究は,これらのモデルの予測精度と,画像分類に適切な特徴を用いる能力を評価することに焦点を当てた。
モデル予測の強みと限界に関する洞察を得るために、この研究は局所的解釈可能なモデルに依存しない説明(LIME)フレームワークを用いている。
この実験の結果から,LIMEは交通や道路標識の分類において,f1スコア0.99のモデルによらず,画像識別のための機械学習モデルの解釈可能性と信頼性を向上させる重要なツールであることが示唆された。
本研究の結論は、モデル予測が関連する画像の特徴に基づいて構築されることを保証することが不可欠であるため、これらのモデルが実際にどのように使用されるかに重要な影響を与える。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
脳形状分類タスクに適用したグラフニューラルネットワークの特徴学習特性に対するモデル選択の影響について検討する。
モデルの異なるレイヤに機能の埋め込みを組み込むことで、かなりの違いが見つかります。
論文 参考訳(メタデータ) (2024-05-02T13:26:18Z) - Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study [61.65123150513683]
CLIPのようなマルチモーダル基盤モデルは、最先端のゼロショット結果を生成する。
これらのモデルは、ImageNetでトレーニングされた教師付きモデルのパフォーマンスを一致させることで、ロバスト性ギャップを埋めることが報告されている。
CLIPは、ベンチマーク上の教師付きImageNetモデルと比較して、かなりの堅牢性低下をもたらすことを示す。
論文 参考訳(メタデータ) (2024-03-15T17:33:49Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning(FL)は、分散モデルトレーニングを可能にするフレームワークである。
既存の手法は、内部表現を無視したモデルを集約する。
我々は、分散データ上で学習した表現のマージンを用いてクライアントの偏差を計算するFedProtoを紹介する。
論文 参考訳(メタデータ) (2021-05-19T08:29:12Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
本稿では,モデル解釈のためのモデル非依存能率直接(MEED)FSフレームワークを提案する。
我々のフレームワークは、正当性、ショートカット、モデルの識別可能性、情報伝達に関する懸念を緩和する。
我々のAILメカニズムは、選択した特徴と目標の間の条件分布を学習するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-09T16:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。