Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning
- URL: http://arxiv.org/abs/2309.05798v2
- Date: Thu, 30 Jan 2025 08:17:51 GMT
- Title: Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning
- Authors: Yunyong Ko, Hanghang Tong, Sang-Wook Kim,
- Abstract summary: We propose a novel hyperedge prediction framework (CASH)
CASH employs context-aware node aggregation to capture complex relations among nodes in each hyperedge for (C1) and (2) self-supervised contrastive learning in the context of hyperedge prediction to enhance hypergraph representations for (C2)
Experiments on six real-world hypergraphs reveal that CASH consistently outperforms all competing methods in terms of the accuracy in hyperedge prediction.
- Score: 57.35554450622037
- License:
- Abstract: Hypergraphs can naturally model group-wise relations (e.g., a group of users who co-purchase an item) as hyperedges. Hyperedge prediction is to predict future or unobserved hyperedges, which is a fundamental task in many real-world applications (e.g., group recommendation). Despite the recent breakthrough of hyperedge prediction methods, the following challenges have been rarely studied: (C1) How to aggregate the nodes in each hyperedge candidate for accurate hyperedge prediction? and (C2) How to mitigate the inherent data sparsity problem in hyperedge prediction? To tackle both challenges together, in this paper, we propose a novel hyperedge prediction framework (CASH) that employs (1) context-aware node aggregation to precisely capture complex relations among nodes in each hyperedge for (C1) and (2) self-supervised contrastive learning in the context of hyperedge prediction to enhance hypergraph representations for (C2). Furthermore, as for (C2), we propose a hyperedge-aware augmentation method to fully exploit the latent semantics behind the original hypergraph and consider both node-level and group-level contrasts (i.e., dual contrasts) for better node and hyperedge representations. Extensive experiments on six real-world hypergraphs reveal that CASH consistently outperforms all competing methods in terms of the accuracy in hyperedge prediction and each of the proposed strategies is effective in improving the model accuracy of CASH. For the detailed information of CASH, we provide the code and datasets at: https://github.com/yy-ko/cash.
Related papers
- HyGEN: Regularizing Negative Hyperedge Generation for Accurate Hyperedge Prediction [16.673776336773738]
Hyperedge prediction is a fundamental task to predict future high-order relations based on observed network structure.
Existing hyperedge prediction methods, however, suffer from the data sparsity problem.
We propose a novel hyperedge prediction method, HyGEN, that employs a negative hyperedge generator that employs positive hyperedges as a guidance to generate more realistic ones.
arXiv Detail & Related papers (2025-02-09T09:27:35Z) - Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
Hyperedge prediction is crucial for understanding complex multi-entity interactions in web-based applications.
Traditional methods often face difficulties in generating high-quality negative samples due to imbalance between positive and negative instances.
We present the scalable and effective negative sample generation for Hyperedge Prediction (SEHP) framework, which utilizes diffusion models to tackle these challenges.
arXiv Detail & Related papers (2024-11-19T09:16:25Z) - SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Adaptive Hypergraph Network for Trust Prediction [23.219647971257725]
Hypergraphs offer a flexible approach to modeling complex high-order correlations.
Most hypergraph-based methods are generic and cannot be well applied to the trust prediction task.
We propose an Adaptive Hypergraph Network for Trust Prediction (AHNTP) to improve trust prediction accuracy by using higher-order correlations.
arXiv Detail & Related papers (2024-02-07T15:21:18Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Neural Temporal Point Processes for Forecasting Directional Relations in Evolving Hypergraphs [10.803714426078642]
We provide a comprehensive solution to the problem of forecasting directional relations in a general setting.
The number of possible hyperedges is exponential in the number of nodes at each event time.
We propose a sequential generative approach that segments the forecasting process into multiple stages.
arXiv Detail & Related papers (2023-01-28T14:32:14Z) - Refined Edge Usage of Graph Neural Networks for Edge Prediction [51.06557652109059]
We propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE)
We first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision.
In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences.
arXiv Detail & Related papers (2022-12-25T23:19:56Z) - Supervised Hypergraph Reconstruction [3.69853388955692]
Many real-world systems involving high-order interactions are best encoded by hypergraphs.
Their datasets often end up being published or studied only in the form of their projections.
We propose supervised hypergraph reconstruction.
Our approach outperforms all baselines by an order of magnitude in accuracy on hard datasets.
arXiv Detail & Related papers (2022-11-23T23:15:03Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Progressive End-to-End Object Detection in Crowded Scenes [96.92416613336096]
Previous query-based detectors suffer from two drawbacks: first, multiple predictions will be inferred for a single object, typically in crowded scenes; second, the performance saturates as the depth of the decoding stage increases.
We propose a progressive predicting method to address the above issues. Specifically, we first select accepted queries to generate true positive predictions, then refine the rest noisy queries according to the previously accepted predictions.
Experiments show that our method can significantly boost the performance of query-based detectors in crowded scenes.
arXiv Detail & Related papers (2022-03-15T06:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.