Hypergraph Structure Inference From Data Under Smoothness Prior
- URL: http://arxiv.org/abs/2308.14172v2
- Date: Thu, 31 Aug 2023 16:57:35 GMT
- Title: Hypergraph Structure Inference From Data Under Smoothness Prior
- Authors: Bohan Tang, Siheng Chen, Xiaowen Dong
- Abstract summary: We propose a method to infer the probability for each potential hyperedge without labelled data as supervision.
We use this prior to derive the relation between the hypergraph structure and the node features via probabilistic modelling.
Experiments on both synthetic and real-world data demonstrate that our method can learn meaningful hypergraph structures from data more efficiently than existing hypergraph structure inference methods.
- Score: 46.568839316694515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraphs are important for processing data with higher-order relationships
involving more than two entities. In scenarios where explicit hypergraphs are
not readily available, it is desirable to infer a meaningful hypergraph
structure from the node features to capture the intrinsic relations within the
data. However, existing methods either adopt simple pre-defined rules that fail
to precisely capture the distribution of the potential hypergraph structure, or
learn a mapping between hypergraph structures and node features but require a
large amount of labelled data, i.e., pre-existing hypergraph structures, for
training. Both restrict their applications in practical scenarios. To fill this
gap, we propose a novel smoothness prior that enables us to design a method to
infer the probability for each potential hyperedge without labelled data as
supervision. The proposed prior indicates features of nodes in a hyperedge are
highly correlated by the features of the hyperedge containing them. We use this
prior to derive the relation between the hypergraph structure and the node
features via probabilistic modelling. This allows us to develop an unsupervised
inference method to estimate the probability for each potential hyperedge via
solving an optimisation problem that has an analytical solution. Experiments on
both synthetic and real-world data demonstrate that our method can learn
meaningful hypergraph structures from data more efficiently than existing
hypergraph structure inference methods.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Learning Hypergraphs From Signals With Dual Smoothness Prior [32.57393976907129]
We propose a framework to infer meaningful hypergraph topologies from observed signals.
Our proposed framework can efficiently infer meaningful hypergraph topologies from observed signals.
arXiv Detail & Related papers (2022-11-03T11:13:02Z) - Deep Hypergraph Structure Learning [34.972686247703024]
Learning on high-order correlation has shown superiority in data representation learning, where hypergraph has been widely used in recent decades.
How to generate the hypergraph structure among data is still a challenging task.
DeepHGSL is designed to optimize the hypergraph structure for hypergraph-based representation learning.
arXiv Detail & Related papers (2022-08-26T10:00:11Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
We present HyperMSG, a novel hypergraph learning framework.
It adapts to the data and task by learning an attention weight associated with each node's degree centrality.
It is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets.
arXiv Detail & Related papers (2021-09-22T12:24:02Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.