論文の概要: Ensemble-based modeling abstractions for modern self-optimizing systems
- arxiv url: http://arxiv.org/abs/2309.05823v1
- Date: Mon, 11 Sep 2023 21:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 15:10:18.965492
- Title: Ensemble-based modeling abstractions for modern self-optimizing systems
- Title(参考訳): 現代自己最適化システムのためのアンサンブルに基づくモデリング抽象化
- Authors: Michal T\"opfer, Milad Abdullah, Tom\'a\v{s} Bure\v{s}, Petr
Hn\v{e}tynka, Martin Kruli\v{s}
- Abstract要約: アンサンブルに基づくコンポーネントモデルDEECoを拡張して,コンポーネントアンサンブルの確立と再構成に機械学習と産業最適化を活用する。
機械学習と最適化は、時間とともに学習し、実行時に動作を最適化し、環境の不確実性に対処する、現代のスマートシステムにとって重要な機能である、と私たちは主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we extend our ensemble-based component model DEECo with the
capability to use machine-learning and optimization heuristics in establishing
and reconfiguration of autonomic component ensembles. We show how to capture
these concepts on the model level and give an example of how such a model can
be beneficially used for modeling access-control related problem in the
Industry 4.0 settings. We argue that incorporating machine-learning and
optimization heuristics is a key feature for modern smart systems which are to
learn over the time and optimize their behavior at runtime to deal with
uncertainty in their environment.
- Abstract(参考訳): 本稿では,我々のアンサンブルに基づくコンポーネントモデルDEECoを拡張し,自律的コンポーネントアンサンブルの確立と再構成において機械学習と最適化ヒューリスティックスを活用する。
我々は、これらの概念をモデルレベルで捉える方法を示し、そのようなモデルが業界4.0の設定におけるアクセス制御関連の問題をモデリングするのにどのように役立つかを示す。
機械学習と最適化のヒューリスティックスの導入は、時間とともに学習し、実行時の動作を最適化し、環境の不確実性に対処する、現代のスマートシステムにとって重要な機能であると主張する。
関連論文リスト
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
我々は,モバイルエッジコンピューティングと基礎モデルを統合した画期的なパラダイムを提示する。
私たちのアプローチの中心はイノベーティブなEmulator-Adapterアーキテクチャであり、基礎モデルを2つの凝集モジュールに分割する。
本稿では,分散環境におけるEmulator-Adapter構造のニーズに合わせて微調整された高度なリソース割り当て機構を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:47:51Z) - A differentiable programming framework for spin models [0.0]
微分可能プログラミングを用いたスピンモデルシミュレーションのための新しいフレームワークを提案する。
我々は、Isingモデル、Pottsモデル、Cellular Pottsモデルという3つの異なるスピンシステムに焦点を当てる。
論文 参考訳(メタデータ) (2023-04-04T13:04:21Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Meta-Reinforcement Learning for Adaptive Control of Second Order Systems [3.131740922192114]
プロセス制御では、多くのシステムは類似しており、よく理解されているダイナミクスを持ち、メタ学習を通じて一般化可能なコントローラを作成することは可能であることを示唆している。
本稿では,メタ強化学習(meta-RL)制御戦略を定式化し,モデル構造などのトレーニングにおいて,既知のオフライン情報を活用する。
重要な設計要素は、トレーニング中にモデルベースの情報をオフラインで利用し、新しい環境と対話するためのモデルフリーのポリシー構造を維持することである。
論文 参考訳(メタデータ) (2022-09-19T18:51:33Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - Structured Hammerstein-Wiener Model Learning for Model Predictive
Control [0.2752817022620644]
本稿では,機械学習によって構築されたモデルを用いて最適制御の信頼性を向上させることを目的とする。
本稿では,Hammerstein-Wienerモデルと凸ニューラルネットワークを組み合わせたモデルを提案する。
論文 参考訳(メタデータ) (2021-07-09T06:41:34Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems [9.099295007630484]
我々は,自律システムのための最適適応戦略のモデルベース要求駆動型合成のためのフレームワークであるOptimal by Design (ObD)を提案する。
ObDは、自己適応システムの基本的な要素、すなわちシステム、能力、要求、環境の高レベルな記述のためのモデルを提案する。
これらの要素に基づいてマルコフ決定プロセス(MDP)が構築され、最適な戦略や最も報いるシステム行動を計算する。
論文 参考訳(メタデータ) (2020-01-16T12:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。